
CTDE Documentation
Release 1.0

Drew Dolgert

April 13, 2016

Contents

1 Introduction 3
1.1 Organization of library . 3
1.2 Acknowledgements . 4
1.3 Availability and distribution . 4

2 Installation 5

3 Background 7
3.1 The Hazard from Survival Analysis . 7
3.2 Finite State Machines Generate Trajectories . 10
3.3 Markov Chain for Discrete-Time Trajectories . 10
3.4 Markov Process for Continuous-Time Trajectories . 10

4 CTDE API 15
4.1 Physical State . 15
4.2 Partial Process . 15
4.3 Transitions . 15
4.4 Intensity . 16
4.5 Transition Distributions . 18
4.6 Firing Function . 20
4.7 Simulation Observer . 20
4.8 Sampler . 21
4.9 Running a Simulation . 21

5 Examples 23

6 Detailed Description of Distributions 25
6.1 Notation . 25
6.2 Requirements for a Continuous-Time Simulation . 25
6.3 Testing Distributions . 30
6.4 Using Julia’s Distributions . 30
6.5 Exponential . 32
6.6 Weibull . 33
6.7 Log-Logistic . 34
6.8 Gamma . 35
6.9 Uniform Distribution . 37
6.10 Triangular Distribution . 37

7 References 41

i

8 Indices and tables 43

Bibliography 45

ii

CTDE Documentation, Release 1.0

A Julia library for stochastic simulation in continuous-time with time-dependent hazard rates.

Contents:

Contents 1

CTDE Documentation, Release 1.0

2 Contents

CHAPTER 1

Introduction

The CTDE library is designed to streamline the process of creating efficient simulations of a large class of stochas-
tic processes as defined by Anderson and Kurtz[Anderson:2007]_. These processes naturally arise in many contexts
including epidemiology [Viet:2004], physiology, ecology, atmospheric sciences, reliability engineering and risk man-
agement. This broad range of applications suggest the value of designing a generic library for simulating complex
semi-Markov processes, independent of the particular application area.

The unifying idea on which this library is based is that there typically are many different pathways for a complex
system to evolve between timesteps. Each pathway can be viewed as an elementary stochastic process with a user
specified time-dependent transition rates and a rule for modifying the overall internal state of the system. At each
instant of time, these elementary processes “compete”, figuratively speaking, for the chance to change the state of
the whole system. Each time step in the simulation corresponds to an event – a “winner” is selected thus changing
the internal state of the system and the sampling from the corresponding statistical distribution to determine the time
increment. This competing process view provides a framework for users to develop simulations for complex models
in an incremental manner.

It is easy to show that competing processes with exponentially distributed transition times have time-independent
transition rates. This is the norm in some application areas such as chemical kinetics. In contrast, it is manifestly
inappropriate for many biological applications such as physiology, ecology and epidemiology. For example, a classic
paper by Stocks [Stocks:1931] clearly shows that the latent period for measles (the distribution times between infection
and the appearance of symptoms) does not follow an exponential distribution. Stocks’ raw data from cases in London
circa 1931, along with optimal fits to exponential, gamma, Weibull, and log-normal distributions computed using the
SciPy statistical library, are shown in Figure 1. Distribution of latent periods for measles in London circa 1931. The
fit of the data to the exponential distribution is very poor while the fits to the other distributions are very good.

This simple example shows that exclusive reliance on exponential distributions may lead systematic biases in stochastic
simulations of epidemiological process. Therefore, this library provides support for general semi-Markov models
based on competing processes with general probability distributions of transition times.

1.1 Organization of library

It is implemented using three cooperating layers:

• Finite state machine: High-level interface for initializing the system, iterating over time steps and gathering
relevant tracing data for post-processing.

• Process Specification: “Middleware” responsible for specifying a simulation with given constraints.

• Competing Clocks Process: Low-level coordination and bookkeeping related to the user-defined competing
processes including distributions of transition times, modification of system state and various dependence relati

This organization has many practical advantages:

3

CTDE Documentation, Release 1.0

0 5 10 15 20
Time (days)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Fr
a
ct

io
n
 o

f
to

ta
l
st

u
d
y
 p

o
p
u
la

ti
o
n

Log-normal

Weibull

Gamma

Exponential

Fig. 1.1: Figure 1. Distribution of latent periods for measles in London circa 1931

• The competing clocks process layer can be viewed as a very efficient, general purpose, stochastic simulation
engine that supports arbitrary statistical distributions for event times. This layer contains no model-specific user
code, thus can be independently verified and validated.

• Typically, the itself model is completely defined by instantiating a state and transitions on that state, connected
by a dependency graph. The underlying code does bookkeeping to track causality through the dependency
graph.

• The library strictly enforces a separation of the static components that define the structural aspects of the model
and the dynamic components that define the evolving state during a simulation. This separation makes it possible
to detect many critical programming errors associated with multithreading at compile time.

1.2 Acknowledgements

This library was created by the Analytical Framework for Infectious Disease Dynamics (AFIDD) group at Cornell
University in conjunction with the USDA Agricultural Research Service. This work was supported by the Science &
Technology Directorate, Department of Homeland Security via interagency agreement no. HSHQDC-10-X-00138.

1.3 Availability and distribution

This library is in the public domain.

4 Chapter 1. Introduction

CHAPTER 2

Installation

This library is written in the Julia language.

Pkg.clone("git@github.com:adolgert/CTDE.jl.git")

It project requires the following packages, which should install when you run Pkg.clone.

• Distributions

• DataStructures

• Logging

The examples will also require the Gadfly package.

5

http://julialang.org/downloads/

CTDE Documentation, Release 1.0

6 Chapter 2. Installation

CHAPTER 3

Background

This addresses two main points, how to specify a model for the library using distributions defined by hazards and why
such a specification, with its initial conditions, is sufficient to define the trajectory for a model.

3.1 The Hazard from Survival Analysis

3.1.1 Discrete case

The discrete case is much easier to understand than the continuous case because it can be explained without employing
any results from calculus. Throughout this section, X will be assumed to real-valued random variable. For example,
X could represent latent periods for measles.

It frequently happens that random samples of the real valued variables such as X are actually analyzed on a discrete
scale. For example Stocks’ data on latent periods of measles in Figure 1. Distribution of latent periods for measles in
London circa 1931 is based on daily visits by patients.

The (cumulative) distribution of X is defined as

𝐹𝑋(𝑘) = 𝒫[𝑥 ≤ 𝑘]

assuming 𝐹𝑋(∞) = 1. The density can be expressed as the difference in adjacent values of the distribution

𝑓𝑋(𝑘) = 𝒫[𝑋 = 𝑘] (3.1)
= 𝒫[𝑋 ≤ 𝑘] − 𝒫[𝑋 ≤ 𝑘 − 1] (3.2)
= 𝐹𝑋(𝑘) − 𝐹𝑋(𝑘 − 1) (3.3)

For Stocks’ data in Figure 1. Distribution of latent periods for measles in London circa 1931, the density at day 𝑘
should be interpreted as the probability of the appearance of symptoms since the previous visit on day 𝑘 − 1.

The hazard is defined as the conditional probability that the value of a random selection from X equals 𝑘 given it this
value is already known to exceed 𝑘 − 1. Using the usual rules for computing conditional probabilities, the hazard is

7

CTDE Documentation, Release 1.0

given by the following ratio

𝑡𝑜

ℎ𝑋(𝑘) =

𝒫[𝑋 = 𝑘 | 𝑘 − 1 < 𝑋]

=

𝑓𝑋(𝑘)

1 − 𝐹𝑋(𝑘 − 1)
(3.4)

=
𝒫[𝑋 = 𝑘 | 𝑘 − 1 < 𝑋]=

𝑓𝑋(𝑘)

1 − 𝐹𝑋(𝑘 − 1)
(3.4)

In the case of Stocks’ data, the hazards shown in Figure 2. Estimated hazards of latent periods for measles in London
circa 1931 would correspond to the probability of symptoms appearing at day 𝑘 given that the patient had not displayed
symptoms at any previous visit. As time goes on, patients who have already developed symptoms effectively reduce
the pool of patients in the study who are still in a state where they might first present symptoms on day 𝑘. This is the
origin of the term in the denominator.

On any given day, the hazard for latent periods can be interpreted as the rate of appearance of symptoms per asymp-
tomatic (infected but not yet symptomatic) patient per day. For example, the hazard inferred from the Weibull distribu-
tion is approximately 0.15 on day 10. In other words, 15% of the patients that are asymptomatic on day 9 will present
symptoms when examined on day 10.

This interpretation is extremely important because it connects a hazard with a rate for a specific process, and that
rate has well defined units of measurement. In addition, it clarifies how rate parameters should be estimated from
observational data. Failure to account for the shrinking pool over time is commonplace. In this case it would lead
to a systematic errors in the estimation of process rates, especially at long times when the depletion effect is most
pronounced.

3.1.2 Continuous case

The random variable X is again assumed to be a real-valued, but the measurements will not be binned as above. The
cumulative distribution not an integer 𝑘 but a continuous time interval, 𝜏 .

𝐹𝑋(𝜏) = 𝑃 [𝑥 ≤ 𝜏]

assuming 𝐹𝑋(∞) = 1. The density is the derivative of the cumulative distribution. The concept of the hazard is part
of survival analysis, where survival is 𝐺𝑋(𝜏) = 1 − 𝐹𝑋(𝜏), and represents the probability the random variable, a
time interval, is longer than 𝜏 . One expression for the hazard is that the density of the random variable is equal to the
probability it survives to a time 𝜏 multiplied by the hazard rate for firing at time 𝜏 , or, in probabilities,

𝑃 [𝜏 < 𝑥 ≤ 𝜏 + 𝑑𝜏]𝑑𝜏 = 𝑃 [𝜏 < 𝑥]𝑃 [𝜏 < 𝑥 ≤ 𝜏 + 𝑑𝜏 + 𝑑𝜏 |𝜏 < 𝑥].

8 Chapter 3. Background

CTDE Documentation, Release 1.0

0 5 10 15 20
Time (days)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

H
a
za

rd

Exponential

Weibull

Log-normal

Gamma

Fig. 3.1: Figure 2. Estimated hazards of latent periods for measles in London circa 1931

S

Show
Symptoms

Leave
Study

I O

Fig. 3.2: Figure 3. Each participant of the Stocks study could either become symptomatic or leave the study. Focusing
on the hazard accounts for the effect of those who leave.

3.1. The Hazard from Survival Analysis 9

CTDE Documentation, Release 1.0

Writing this same equation with its almost-sure equivalents defines the continuous hazard, 𝜆𝑋(𝜏),

𝑓𝑋(𝜏) = 𝐺𝑋(𝜏)𝜆𝑋(𝜏).

This is a rearrangement away from the definition of the discrete case.

3.2 Finite State Machines Generate Trajectories

This library accepts a specification of a model in terms of hazards, an initial condition, and produces trajectories. This
set of high-level steps to simulation (specify, initialize, step) has a well-defined abstraction called a finite state machine.
It isn’t the finite state machine familiar to programmers but a mathematical model, coming from category theory, for a
particularly simple class of computing systems. At a conceptual level, a finite state machine can be considered a black
box that receives a sequence of input signal and produces an output signal for each input signal. Internally, the black
box maintains a state – some sort of finite summary representation of the sequence of input signals encountered so
far. For each input signal, the box performs two operations. In both cases, the decision depends on the current internal
state and the identity of the input signal just received.

• Chose next state

• Generate output token

It is helpful to view the finite state machine layer as a mechanism to simulate a Markov chain or Markov process.

3.3 Markov Chain for Discrete-Time Trajectories

Roughly speaking, a Markov chain, X, is a probabilistic system that makes random jumps among a finite set of distinct
states, 𝑠0, 𝑠1, 𝑠2, . . . , 𝑠𝑁 such that the probability of choosing the next state, 𝑋𝑛+1 depends only on the current state,
𝑋𝑛. In mathematical terms, the conditional probabilities for state transitions must satisfy

𝒫[𝑋𝑛+1 = 𝑠𝑙|𝑋0 = 𝑠𝑖, 𝑋1 = 𝑠𝑗 , . . . , 𝑋𝑛 = 𝑠𝑘] = 𝒫[𝑋𝑛+1 = 𝑠𝑙|𝑋𝑛 = 𝑠𝑘]

Since more distant history does not affect future behavior, Markov chains are sometimes characterized as memoryless.

This relation can be iterated to compute the conditional probabilities for multiple time steps

𝒫[𝑋𝑛+2 = 𝑠𝑚|𝑋𝑛 = 𝑠𝑘] =
∑︁
𝑙

𝒫[𝑋𝑛+2 = 𝑠𝑚|𝑋𝑛+1 = 𝑠𝑙]𝒫[𝑋𝑛+1 = 𝑠𝑙|𝑋𝑛 = 𝑠𝑘]

Note, the transition probabilities 𝒫[𝑋𝑛+1 = 𝑠𝑙|𝑋𝑛 = 𝑠𝑘] may depend on time (through the index 𝑛). These so-called
time-inhomogeneous Markov chains arise when the system of interest is driven by external entities. Chains with time-
independent conditional transition probabilities are called time-homogeneous. The dynamics of a time-homogeneous
Markov chain is completely determined by the initial state and the transition probabilities. All processes considered
in this document are time-homogeneous.

3.4 Markov Process for Continuous-Time Trajectories

A Markov process is a generalization of the Markov chain such that time is viewed as continuous rather than discrete.
As a result, it makes sense to record the times at which the transitions occur as part of the process itself.

The first step in this generalization is to define a stochastic process Y that includes the transition times as well as the
state, 𝑌𝑛 = (𝑠𝑗 , 𝑡𝑛).

10 Chapter 3. Background

CTDE Documentation, Release 1.0

Fig. 3.3: Figure 4. Realization of a continuous time stochastic process and associated Markov chain.

The second step is to treat time on a truly continuous basis by defining a new stochastic process, Z, from Y by the rule
𝑍𝑡 = 𝑠𝑘 in the time interval 𝑡𝑛 ≤ 𝑡 < 𝑡𝑛+1 given 𝑌𝑛 = (𝑠𝑘, 𝑡𝑛) . In other words, Zt is a piecewise constant version
of Y as shown in Figure 4. Realization of a continuous time stochastic process and associated Markov chain.

A realization of the process Y is defined by the closed diamonds (left end points) alone. Similarly, a realization of the
process Zt is illustrated by the closed diamonds and line segments. The closed and open diamonds at the ends of the
line segment indicate that the segments include the left but not the right end points.

The memoryless property for Markov processes is considerably more delicate than in the case of Markov chain because
the time variable is continuous rather than discrete. In the case of Y, the conditional probabilities for state transitions
of must satisfy

𝒫[𝑌𝑛+1 = (𝑠𝑙, 𝑡𝑛+1)|𝑌0 = (𝑠𝑖, 𝑡0), 𝑌1 = (𝑠𝑗 , 𝑡1), . . . , 𝑌𝑛 = (𝑠𝑘, 𝑡𝑛)] = 𝒫[𝑌𝑛+1 = (𝑠𝑙, 𝑡𝑛+1)|𝑌𝑛 = (𝑠𝑘, 𝑡𝑛)]

The proper generalization of the requirement of time-homeogeneity stated previously for Markov chains is that joint
probability be unchanged by uniform shifts in time

𝒫[𝑍𝑡+𝜏 |𝑍𝑠+𝜏] = 𝒫[𝑍𝑡|𝑍𝑠]

for 0 < 𝑠 < 𝑡 and 𝜏 > 0. Stochastic processes with shift invariant state transition probabilities are called stationary.

When we examined hazard rates above, we were examining the rate of transitions for a Markov process. The overall
probability of the next state of the Markov process is called the core matrix,

𝒫[𝑍𝑡|𝑍𝑠] = 𝑄𝑖𝑗(𝑡𝑛+1 − 𝑡𝑛)

indicating a state change between the states (𝑠𝑖, 𝑠𝑗). The derivative of this is a rate,

𝑞𝑖𝑗(𝑡𝑛+1 − 𝑡𝑛) =
𝑑𝑄𝑖𝑗(𝑡𝑛+1 − 𝑡𝑛)

𝑑𝑡
,

which is a joint distribution over states and time intervals. Normalization for this quantity sums over possible states
and future times,

1 =

∫︁ ∞

0

∑︁
𝑗

𝑞𝑖𝑗(𝑠)𝑑𝑠.

The survival, in terms of the core matrix, is

𝐺𝑖(𝜏) = 1 −
∫︁ 𝜏

0

∑︁
𝑘

𝑞𝑖𝑘(𝑠)𝑑𝑠.

This means our hazard is

𝜆𝑖𝑗(𝜏) =
𝑞𝑖𝑗(𝜏)

1 −
∫︀ 𝜏

0

∑︀
𝑘 𝑞𝑖𝑘(𝑠)𝑑𝑠

.

For the measles example, the set of future states 𝑗 of each individual include symptomatic and all the possible other
ways an individual leaves the study, so you can think of 𝑗 = left town. In practice, we build a hazard in two steps.
First, count the probability over all time for any one eventual state 𝑗. This is the same stochastic probability 𝜋𝑖𝑗 that is
seen in Markov chains. Second, measure the distribution of times at which intervals enter each new state 𝑗, given that
they are headed to that state. This is called the holding time, ℎ𝑖𝑗(𝜏), and is a conditional probability. Together, these
two give us the core matrix,

𝑞𝑖𝑗(𝜏) = 𝜋𝑖𝑗ℎ𝑖𝑗(𝜏).

3.4. Markov Process for Continuous-Time Trajectories 11

CTDE Documentation, Release 1.0

Note that ℎ𝑖𝑗(𝜏) is a density whose integral𝐻𝑖𝑗(𝜏) is a cumulative distribution. If we write the same equation in terms
of probabilities, we see that it amounts to separating the Markov process into a marginal and conditional distribution.

𝑡𝑜

𝑞𝑖𝑗(𝜏) =

𝑑

𝑑𝜏
𝑃 [𝑍𝑡|𝑍𝑠]

=

𝑑

𝑑𝜏
𝑃 [𝑠𝑗 |𝑠𝑖, 𝑡𝑛]𝑃 [𝑡𝑛−1 − 𝑡𝑛 ≤ 𝜏 |𝑠𝑖, 𝑠𝑗 , 𝑡𝑛]

=

𝑃 [𝑠𝑗 |𝑠𝑖, 𝑡𝑛]
𝑑

𝑑𝜏
𝑃 [𝑡𝑛−1 − 𝑡𝑛 ≤ 𝜏 |𝑠𝑖, 𝑠𝑗 , 𝑡𝑛]

=

𝜋𝑖𝑗
𝑑

𝑑𝜏
𝐻𝑖𝑗(𝜏)

=

𝜋𝑖𝑗ℎ𝑖𝑗(𝜏)(3.-8)

=
𝑑

𝑑𝜏
𝑃 [𝑍𝑡|𝑍𝑠] =

𝑑

𝑑𝜏
𝑃 [𝑠𝑗 |𝑠𝑖, 𝑡𝑛]𝑃 [𝑡𝑛−1 − 𝑡𝑛 ≤ 𝜏 |𝑠𝑖, 𝑠𝑗 , 𝑡𝑛]=

𝑃 [𝑠𝑗 |𝑠𝑖, 𝑡𝑛]
𝑑

𝑑𝜏
𝑃 [𝑡𝑛−1 − 𝑡𝑛 ≤ 𝜏 |𝑠𝑖, 𝑠𝑗 , 𝑡𝑛]=

𝜋𝑖𝑗
𝑑

𝑑𝜏
𝐻𝑖𝑗(𝜏) =

𝜋𝑖𝑗ℎ𝑖𝑗(𝜏)
(3.-9)

Choosing the other option for the marginal gives us the waiting time formulation for the core matrix. It corresponds to
asking first what is the distribution of times at which the next event happens, no matter which event, and then asking

12 Chapter 3. Background

CTDE Documentation, Release 1.0

which events are more likely given the time of the event.

𝑡𝑜

𝑞𝑖𝑗(𝜏) =

𝑑

𝑑𝜏
𝑃 [𝑍𝑡|𝑍𝑠]

=

𝑑

𝑑𝜏
𝑃 [𝑠𝑗 |𝑠𝑖, 𝑡𝑛, 𝑡𝑛+1]𝑃 [𝑡𝑛−1 − 𝑡𝑛 ≤ 𝜏 |𝑠𝑖, 𝑡𝑛]

=

𝑑

𝑑𝜏
(Π𝑖𝑗(𝜏)𝑊𝑖(𝜏))

=

𝜋𝑖𝑗(𝜏)
𝑑

𝑑𝜏
𝑊𝑖(𝜏)

=

𝜋𝑖𝑗(𝜏)𝑤𝑖(𝜏)(3.-9)

=
𝑑

𝑑𝜏
𝑃 [𝑍𝑡|𝑍𝑠] =

𝑑

𝑑𝜏
𝑃 [𝑠𝑗 |𝑠𝑖, 𝑡𝑛, 𝑡𝑛+1]𝑃 [𝑡𝑛−1 − 𝑡𝑛 ≤ 𝜏 |𝑠𝑖, 𝑡𝑛]=

𝑑

𝑑𝜏
(Π𝑖𝑗(𝜏)𝑊𝑖(𝜏)) =

𝜋𝑖𝑗(𝜏)
𝑑

𝑑𝜏
𝑊𝑖(𝜏) =

𝜋𝑖𝑗(𝜏)𝑤𝑖(𝜏)
(3.-10)

While the waiting time density 𝑤𝑖(𝜏), is the derivative of the waiting time, we won’t end up needing to relation 𝜋𝑖𝑗(𝜏)
to Π𝑖𝑗(𝜏) when finding trajectories or computing hazards, so the more complicated relationship won’t be a problem.

3.4. Markov Process for Continuous-Time Trajectories 13

CTDE Documentation, Release 1.0

14 Chapter 3. Background

CHAPTER 4

CTDE API

4.1 Physical State

The physical state is composed of a set of disjoint substates. Each substate can be read and written with a key. That
means anything you want to be state should have a getindex and setindex!. A simple example is state=zeros(Int, 10).
A more complicated example, this state is a count of bees at different plants.

type PhysicalState
plants::Array{Int,2}
bees::Array{Int,2}

end

function getindex(state::PhysicalState, x, y)
state.bees[x, y]

end

function setindex!(state::PhysicalState, value, x, y)
state.bees[x, y]=value

end

When specifying the process, intensities and firing functions can depend on the state only through a certain set of
indexes, which you specify. In this example, the indices will be of the form of a tuple, (x, y) of type Tuple{Int, Int}.

4.2 Partial Process

The library defines the partial process, CTDE.PartialProcess, which is used to specify the simulation and compute
trajectories.

process=PartialProcess(physical_state)

Then specify the process by adding transitions.

4.3 Transitions

Each transition has two logical parts, an intensity function which describes when the transition is enabled and how
long after enabling it will fire, and a firing function which describes what the transition does to the state when it fires.

AddTransition!(process::PartialProcess, hazard::Intensity, hazard_dependencies, firing::Function, firing dependencies, name, keywords)

15

CTDE Documentation, Release 1.0

•process::PartialProcess is the partial process just defined above.

•hazard::Intensity is a hazard rate, derived from the abstract class Intensity, as will be described below.

•hazard_dependencies is a list of indices into the physical state that will be passed to the intensity for this
transition.

•firing::Function is a function that changes the state, as described below.

•firing_dependencies is a list of indices into the physical state that will be passed to the intensity for this
transition.

•name is a friendly name to use when the process tells you what transition fired.

•keywords means that you can pass values such as index=3 to the transition as messages to the samplers.
Some samplers need hints about how to organize their work.

•Returns nothing.

4.4 Intensity

An intensity says when the transition is enabled or disabled and, when it is enabled, the distribution of times at which
it may fire.

class Intensity
An abstract class for transition intensities. There are methods defined on this abstract class which help imple-
ment intensities.

Enabled(intensity::Intensity)
Returns a boolean to say whether the intensity is currently enabled. The helper method returns intensity.enabled
for the object passed.

Reset!(intensity::RecoverIntensity, time::Float64, state, keys..)
When a transition fires, this is called to tell the intensity that it must forget all past observations of the state and
determine, from the state at the values specified by the keys, what is the new distribution going forward.

Update!(intensity::RecoverIntensity, time, state, keys...)
This is the workhorse of the intensity distribution. Given the state at the given set of keys, the intensity chooses
its current distribution for the hazard rate. It returns a symbol to report what happened. That symbol is either
:Unmodified, :Disabled, :Enabled, or :Modified. The last choice, :Modified, means that the hazard was nonzero
and is now nonzero but with a different distribution.

Sample(intensity::Intensity, when::Float64, rng::MersenneTwister)
samples the current distribution for the hazard, given that it has not yet fired by time when. This method calls
Sample(intensity.distribution), so a type which defines a distribution member doesn’t need to reimpliment this
method.

Putative(intensity::Intensity, when::Float64, exponential_interval::Float64)
integrates the current distribution for the hazard to determine at what time it will have used up an integrated
hazard equal to exponential_interval. This is a way to sample distributions for Gibson and Bruck’s Next Reac-
tion Method or Anderson’s method. This method calls Putative(intensity.distribution), so a type which defines
a distribution member doesn’t need to reimpliment this method.

class MemoryIntensity
Many intensities can be defined with three quantities, 1) whether they are enabled given the current state, 2)
given that they are enabled, the current set of parameters for their distribution, and 3) the particular distribution.
This intensity is called a memory intensity because it sets the enabling time of the distribution when it is enabled,
but it doesn’t change that enabling time if, when the state changes, the parameters for the distribution change. It
remembers the first enabling time.

16 Chapter 4. CTDE API

CTDE Documentation, Release 1.0

MemoryIntensity(invariant::Function, distribution)
The distribution is a TransitionDistribution. The function is described just below.

invariant(time, state, keys...)
This function looks at the state, as indexed by the keys and returns a tuple with two values, whether the transition
should be enabled, according to the current state, and, if so, what are the values of the parameters for the
distribution of this transition. It looks like (Bool, Array{Any,1}).

class MemorylessIntensity
Many intensities can be defined with three quantities, 1) whether they are enabled given the current state, 2)
given that they are enabled, the current set of parameters for their distribution, and 3) the particular distribution.
This intensity is called a memoryless intensity because it sets the enabling time of the distribution not only it is
enabled, but whenever a change of the state causes the parameters, those returned by the invariant, to change.
When that happens, it forgets the original enabling time.

For example, a simulation of susceptible-infectious-susceptible individuals defines a recovery intensity that ensures
that the last infectious person never recovers. It sounds mean, but it helps certain long-running simulations get data.

Listing 4.1: sis.jl

function Recover(state, who)
state[who]=0
[who]

end

function RecoverParameters(time, state, who, others...)
enabled=(state[who]==1)
Forbid recovery if this is the only one infectious.
found_nonzero=false
for nz_idx = 1:length(others)

if state[others[nz_idx]]>0
found_nonzero=true
break

end
end
(enabled && found_nonzero, [1.0, 2.0])

end
for midx = 1:N

hazard=MemorylessIntensity(RecoverParameters,
TransitionWeibull(1.0, 2.0))
TransitionExponential(parameters[:Gamma]))

depends=[midx]
for dep_idx=1:N

if dep_idx!=midx
push!(depends, dep_idx)

end
end
We add the index=transition_idx only for Direct methods.
AddTransition!(process,

hazard, depends,
Recover, [midx],
"r$midx", index=transition_idx)

There are helper methods, defined on the abstract type Intensity, which reduce the amount of code required for imple-
mentation.

type InfectIntensity <: Intensity
distribution::TransitionDistribution
enabled::Bool

4.4. Intensity 17

CTDE Documentation, Release 1.0

InfectIntensity(dist)=new(dist, 0.0, false)
end

function Reset!(intensity::InfectIntensity, time, state, who, whom)
distribution.enabling_time=time
Update!(intensity, time, state, who, whom)

end

function Update!(intensity::InfectIntensity, time, state, who, whom)
modified=:Undefined
enabled=(state[who]==1 && state[whom]==0)
if enabled!=intensity.enabled

if enabled
intensity.distribution.enabling_time=time
modified=:Enabled

else
modified=:Disabled

end
intensity.enabled=enabled

else
modified=:Unmodified

end
modified

end

In general, the intensity can depend on any state since it last fired or the start of the simulation. In practice, an intensity
will examine the state to create parameters for the distribution. The WrappedDistribution is a good example of the
interface distributions support.

4.5 Transition Distributions

The distributions an intensity needs have different methods from distributions in Julia’s Distributions module.

class TransitionDistribution
This abstract class is a base class for the continuous univariate distributions used by intensities.

4.5.1 WrappedDistribution

class WrappedDistribution
This class uses the available distributions in the Distributions package to meet the API needed by the simulation.
It’s likely less efficient and possibly numerically inaccurate for some distributions, but here goes. Its members
are relative_distribution and enabling_time.

WrappedDistribution(dist::Distributions.ContinuousUnivariateDistribution, enabling_time::Float64)
The constructor. Pass in a distribution from the Distributions package.

Sample(distribution::WrappedDistribution, now::Float64,
rng::MersenneTwister)

This samples the distribution using the given random number generator. It calls quantile(distribution, now,
rand(rng)).

HazardIntegral(dist::WrappedDistribution, t1, t2)
This integrates the hazard from time t1 to time t2 using logccdf(dist, t1-te)-logccdf(dist, t2-te) where te is the
enabling time.

18 Chapter 4. CTDE API

CTDE Documentation, Release 1.0

ImplicitHazardIntegral(dist::WrappedDistribution, cumulative_hazard::Float64, when::Float64)
This is the inverse of the hazard integral, so ImplicitHazardIntegral(dist, HazardIntegral(dist, t1, t2), t1)=t2.

EnablingTime(dist::WrappedDistribution)
Return the enabling time. It’s a common parameter of all of these distributions.

EnablingTime!(dist::WrappedDistribution, time::Float64)
Set the enabling time.

Parameters(dist::WrappedDistribution)
This returns the parameters for the distribution. The exact set depends on the underlying distribution.

4.5.2 Exponential

TransitionExponential(𝜆::Real, enabling_time::Real)
The rate, 𝜆, is the hazard rate, not a scale.

𝐹 (𝑇) = 1 − 𝑒𝑥𝑝 [−𝜆(𝑇 − 𝑇𝑒)]

4.5.3 Weibull

TransitionWeibull(𝜃::Float64, k::Float64)
The scale is 𝜃. 𝑘 is the exponent.

𝐹 (𝑇) = 1 − 𝑒𝑥𝑝

[︃
−
(︂
𝑇 − 𝑇𝑒

𝜃

)︂𝑘
]︃

4.5.4 Gamma

TransitionGamma(𝛼, 𝛽, enabling_time)
𝛼 is the shape parameter, 𝛽 the inverse scale parameter, also called a rate parameter.

𝑓(𝑡) =
𝛽𝛼

Γ(𝛼)
𝑥𝛼−1𝑒−𝛽𝑥

4.5.5 LogLogistic

TransitionLogLogistic(𝛼, 𝛽)

𝐹 (𝑡) =

[︃
1 +

(︂
𝑡− 𝑡𝑒
𝛼

)︂−𝛽
]︃−1

4.5.6 NelsonAalen

class NelsonAalenDistribution
Given a list of times the distribution either fired or was right-censored, meaning it failed to fire, this constructs
an estimator of the distribution that can be sampled.

Because each transition in the process will either fire or be interrupted, this estimator can be used to ask whether
the firing of each transition matches the expected distribution.

cdf(dist::NelsonAalenDistribution, bypoint::Int)

4.5. Transition Distributions 19

CTDE Documentation, Release 1.0

4.5.7 Empirical

class EmpiricalDistribution
This class estimates a distribution given samples of the times at which that distribution fired. First make the
object and then use push! to add values. Finally, call build! before sampling from it. This is useful for testing
distributions.

EmpiricalDistribution()
Constructor.

push!(ed::EmpiricalDistribution, value::Float64)
Add a sample to the list.

build!(ed::EmpiricalDistribution)
Internally, it needs to sort the list of samples.

mean(ed::EmpiricalDistribution)

variance(ed::EmpiricalDistribution)

kolmogorov_smirnov_statistic(ed::EmpiricalDistribution, other)
The other is a distrubition for which cdf is defined. This returns two values, the maximum difference between
the two distributions and whether that maximum difference meets the 0.05 confidence interval for the hypothesis
that they are the same distribution.

4.6 Firing Function

The firing function is a function that modifies state. Its signature has to be

FiringFunction(state, keys...)

the firing function returns a list of all substates which could be affected by having fired. While the list of hazard
dependencies and firing dependencies is state, the list of what was affected by firing is not. As an example, recovery
and infection for a disease model could look like If the firing function reads or writes mutable state other than that
specified by the indices in keys, then the simulation will be incorrect.

function Recover!(state, who)
state[who]=0
[who]

end

function Infect!(state, who)
state[who]=1
[who]

end

4.7 Simulation Observer

Every time the simulation determines the next time and transition, it changes the state and then calls an observer with
the signature

StateObserver(state, affected_keys, clock_name, time::Float64)

•state is the state of the system.

•affected_keys are those substates which were affected when the last transition fired.

20 Chapter 4. CTDE API

CTDE Documentation, Release 1.0

•clock_name is the name given to that transition.

•time is the time at which that transition happened.

•Returns: The observer returns a boolean indicating whether the simulation may continue.

In practice, this function is a closure which adds data to a list of data, or writes that list to disk. For instance,

function Observer(out::ScreenObserver)
function sobserve(state::Array{Int,1}, affected_keys, clock_name, time::Float64))

AddEntry!(out, state[affected_keys[1], time])
end

end

4.8 Sampler

Define a sampler. There are a few to choose among.

class NextReactionHazards
This sampler uses a variant of Gibson and Bruck’s next reaction algorithm, described by Anderson and Kuntz.

NextReactionHazards()
Constructor.

class FixedDirect
This is an optimized direct reaction sampler. It assumes there are a fixed number of transitions in the system and
that every transition is given an ordinal with keywords of the form index=<Int>.

FixedDirect(N::Int)
Constructor. N is the number of transitions in the system.

class NaiveSampler
This is appropriate only for simulations where no transition is ever reenabled after it fires or is disabled. It is
equivalent to Next Reaction in this case.

4.9 Running a Simulation

Once the process is created and sampler chosen, a single function runs the simulation. In this example, the MakePro-
cess function creates state and adds transitions to the process.

rng=MersenneTwister(333333)
N=3
parameters=Dict(:Gamma =>1.0, :Beta => 1.0)
process, state=MakeProcess(N, parameters, rng)
observer=SamplingObserver(N, 1000)
sampler=NextReactionHazards()

RunSimulation(process, sampler, Observer(observer), rng)

4.8. Sampler 21

CTDE Documentation, Release 1.0

22 Chapter 4. CTDE API

CHAPTER 5

Examples

• Well-mixed SIR as a test of Ball and Nasell’s predictions of SIR final size distributions.

• Bouncing Rabbits which move on a two-dimensional board, without stepping on each other, but they infect each
other, sadly.

• Susceptible-Infectious-Susceptible This is a good test of the samplers because results are well-known. It plots
the master probabilities for a regenerative process.

• Object-based Simulation This doesn’t use dictionary keys in order to access substates of the physical state. It
uses the objects themselves, which lends it to more free-form simulation.

23

https://github.com/adolgert/CTDE.jl/tree/master/example/sir
https://github.com/adolgert/CTDE.jl/blob/master/example/rabbits.jl
https://github.com/adolgert/CTDE.jl/blob/master/example/sis.jl
https://github.com/adolgert/CTDE.jl/blob/master/example/sir.jl

CTDE Documentation, Release 1.0

24 Chapter 5. Examples

CHAPTER 6

Detailed Description of Distributions

This describes implementation of distributions for sampling of distributions for stochastic simulation in continuous
time. This kind of simulation makes specific demands on what calls a distribution must support, and those calls are
different from what libraries provide. This is a guide for implementation of new distributions and a way to ensure that
those implemented look correct. If something is wrong here, it matters, so file a bug report.

6.1 Notation

First, let’s affix notation. The cumulative distribution function of every regular distribution can be written as an integral
over its hazard rate, 𝜆

𝐹 (𝑡) = 1 − 𝑒−
∫︀ 𝑡
0
𝜆(𝑠)𝑑𝑠.

All algorithms for stochastic simulation treat distributions as being defined in absolute time, specified as an enabling
time, 𝑡𝑒,

𝐹 (𝑡, 𝑡𝑒) = 1 − 𝑒−
∫︀ 𝑡−𝑡𝑒
0

𝜆(𝑠)𝑑𝑠.

Working with distributions in absolute time is a simple shift of the time scale and will be ignored in further discussions,
although the enabling time, 𝑡𝑒, will certainly appear in code. Fig. (6.1).

The density function is the derivative of the cumulative distribution function,

𝑓(𝑡) =
𝑑𝐹 (𝑡)

𝑑𝑡
= 𝜆(𝑡)𝑒−

∫︀ 𝑡
0
𝜆(𝑠)𝑑𝑠.

The survival is

𝐺(𝑡) = 1 − 𝐹 (𝑡) = 𝑒−
∫︀ 𝑡
0
𝜆(𝑠)𝑑𝑠.

Because survival is multiplicative, we further label the survival from time 𝑡0 to 𝑡1 as

𝐺(𝑡0, 𝑡1) =
𝐺(𝑡1)

𝐺(𝑡0)
= 𝑒−

∫︀ 𝑡1
𝑡0

𝜆(𝑠)𝑑𝑠

6.2 Requirements for a Continuous-Time Simulation

6.2.1 Shifted Sample

The First Reaction method requires that we sample a distribution given that we known it has not yet fired by a time
𝑡0. The statement that it hasn’t fired by time 𝑡0 creates a new distribution from which to sample. If the old distribution

25

CTDE Documentation, Release 1.0

had the hazard 𝐺(𝑡) = 𝐺(0, 𝑡), it could be written as

𝐺(0, 𝑡) = 𝐺(0, 𝑡0)𝐺(𝑡0, 𝑡).

It is this partial survival, since 𝑡0, that we want to sample. Solving for 𝐺(𝑡0, 𝑡) and subtracting both sides from 1,

1 −𝐺(𝑡0, 𝑡) =
𝐺(0, 𝑡0) −𝐺(0, 𝑡)

𝐺(0, 𝑡0)
.

Written in terms of the cumulative distribution functions, the cdf of the new distribution, which we’ll call 𝐹 (𝑡, 𝑡0), is

𝐹 (𝑡, 𝑡0) =
𝐹 (𝑡) − 𝐹 (𝑡0)

1 − 𝐹 (𝑡0)

This kind of distribution could be sampled by a rejection method, but the default way to sample it is by inversion,
which means generating a uniform random value between [0, 1] and solving 𝑈 = 𝐹 (𝑡) for 𝑡. For Eq. (6.2.1), this
becomes

𝑡𝑜

𝑈 =

𝐹 (𝑡, 𝑡0, 𝑡𝑒)

=

𝐹 (𝑡, 𝑡𝑒) − 𝐹 (𝑡0, 𝑡𝑒)

1 − 𝐹 (𝑡0, 𝑡𝑒)

𝑈(1 − 𝐹 (𝑡0, 𝑡𝑒)) =

𝐹 (𝑡, 𝑡𝑒) − 𝐹 (𝑡0, 𝑡𝑒)

𝐹 (𝑡, 𝑡𝑒) =

𝑈(1 − 𝐹 (𝑡0, 𝑡𝑒)) + 𝐹 (𝑡0, 𝑡𝑒)

𝐹 (𝑡− 𝑡𝑒) =

𝑈(1 − 𝐹 (𝑡0 − 𝑡𝑒)) + 𝐹 (𝑡0 − 𝑡𝑒)

𝑡− 𝑡𝑒 =

𝐹−1 [𝑈(1 − 𝐹 (𝑡0 − 𝑡𝑒)) + 𝐹 (𝑡0 − 𝑡𝑒)]

𝑡 =

𝑡𝑒 + 𝐹−1 [𝑈(1 − 𝐹 (𝑡0 − 𝑡𝑒)) + 𝐹 (𝑡0 − 𝑡𝑒)] (6.0)

=
𝐹 (𝑡, 𝑡0, 𝑡𝑒) =
𝐹 (𝑡, 𝑡𝑒) − 𝐹 (𝑡0, 𝑡𝑒)

1 − 𝐹 (𝑡0, 𝑡𝑒)
𝑈(1 − 𝐹 (𝑡0, 𝑡𝑒))=

𝐹 (𝑡, 𝑡𝑒) − 𝐹 (𝑡0, 𝑡𝑒)𝐹 (𝑡, 𝑡𝑒)=
𝑈(1 − 𝐹 (𝑡0, 𝑡𝑒)) + 𝐹 (𝑡0, 𝑡𝑒)𝐹 (𝑡− 𝑡𝑒)=
𝑈(1 − 𝐹 (𝑡0 − 𝑡𝑒)) + 𝐹 (𝑡0 − 𝑡𝑒)𝑡− 𝑡𝑒=
𝐹−1 [𝑈(1 − 𝐹 (𝑡0 − 𝑡𝑒)) + 𝐹 (𝑡0 − 𝑡𝑒)] 𝑡=
𝑡𝑒 + 𝐹−1 [𝑈(1 − 𝐹 (𝑡0 − 𝑡𝑒)) + 𝐹 (𝑡0 − 𝑡𝑒)]

(6.0)

26 Chapter 6. Detailed Description of Distributions

CTDE Documentation, Release 1.0

We will call this operation SampleShifted.

6.2.2 Hazard Rate for Next Reaction

The Next Reaction method requires sampling a distribution such that the quantile is saved, so that later adjustments to
the distribution can use the same quantile.

During a simulation, the hazard rate, 𝜆, is a function of the state of the system, 𝑋(𝑡). The state of the system only
changes in jumps, so the hazard rate is effectively a series of distributions in time. For instance, a hazard rate, from
enabling time 𝑇0 to firing time 𝑇3, might have three parts.

𝑡𝑜

𝜆({𝑋0, 𝑇0}, 𝑡) = ℎ0(𝑡)

𝑇0 ≤ 𝑡 < 𝑇1

𝜆({𝑋0, 𝑇0, 𝑋1, 𝑇1}, 𝑡) = ℎ1(𝑡)

𝑇1 ≤ 𝑡 < 𝑇2

𝜆({𝑋0, 𝑇0, 𝑋1, 𝑇1, 𝑋2, 𝑇2}, 𝑡) = ℎ2(𝑡)

𝑇2 ≤ 𝑡 < 𝑇3(6.1)

𝑇0 ≤ 𝑡 < 𝑇1𝜆({𝑋0, 𝑇0, 𝑋1, 𝑇1}, 𝑡) = ℎ1(𝑡)
𝑇1 ≤ 𝑡 < 𝑇2𝜆({𝑋0, 𝑇0, 𝑋1, 𝑇1, 𝑋2, 𝑇2}, 𝑡) = ℎ2(𝑡)
𝑇2 ≤ 𝑡 < 𝑇3

(6.1)

The algorithm therefore samples for a firing time from ℎ0(𝑡) as soon as the transition is enabled, but that time will turn
out to be wrong (we call it a putative time). Later, the algorithm will resample using ℎ1(𝑡) using the original sample’s
quantile and taking time off the clock. If the first sample were by inversion, it would look like solving this equation
for 𝑡 (still ignoring enabling times),

𝑈 = 1 − exp

(︂∫︁ 𝑡

0

ℎ0(𝑠)𝑑𝑠

)︂
.

Then a later sample would use the same 𝑈 , but with knowledge that the distribution now contains a new part, ℎ1(𝑡),

𝑈 = 1 − exp

(︂
−
∫︁ 𝑡1

0

ℎ0(𝑠)𝑑𝑠

)︂
exp

(︂
−
∫︁ 𝑡

𝑡1

ℎ1(𝑠)𝑑𝑠

)︂

6.2. Requirements for a Continuous-Time Simulation 27

CTDE Documentation, Release 1.0

Anderson had the bright idea to write the quantile as an exponential quantile, 1 − 𝑈 = 𝑒ln(1−𝑈), so that the equation
requires only addition of integrated hazards,

𝑡𝑜

ln(1 − 𝑈) =

−
∫︁ 𝑡1

0

ℎ0(𝑠)𝑑𝑠−
∫︁ 𝑡

𝑡1

ℎ1(𝑠)𝑑𝑠∫︁ 𝑡

𝑡1

ℎ1(𝑠)𝑑𝑠 =

− ln(1 − 𝑈) −
∫︁ 𝑡1

0

ℎ0(𝑠)𝑑𝑠.(6.1)

=

−
∫︁ 𝑡1

0

ℎ0(𝑠)𝑑𝑠−
∫︁ 𝑡

𝑡1

ℎ1(𝑠)𝑑𝑠

∫︁ 𝑡

𝑡1

ℎ1(𝑠)𝑑𝑠=

− ln(1 − 𝑈) −
∫︁ 𝑡1

0

ℎ0(𝑠)𝑑𝑠.

(6.1)

As the underlying distribution, ℎ𝑖(𝑡), changes, the right hand side gets smaller and smaller. Let’s call the sum of all
consumed hazard 𝛾,

𝛾 =
∑︁
𝑖

∫︁ 𝑡𝑖+1

𝑡𝑖

ℎ𝑖(𝑠)𝑑𝑠

The algorithm therefore needs three operations from the distribution.

1. MeasuredSample—Sample the distribution, returning the exponential quantile. Calling the random number
generator, “rng,” and the putative time 𝑡𝑝, it’s

(rng, ℎ0(𝑡)) ↦→ (𝑡𝑝,− ln(1 − 𝑈)) .

2. ConsumeSample—Consume remaining quantile for the next sample. If the sum of hazard in the past is called
𝛾, then

(𝛾, ℎ𝑖(𝑡), 𝑡𝑖) ↦→ (𝛾′, 𝑡𝑖+1)

3. Putative—Generate a new putative time from the exponential quantile and the consumed hazard,

(− ln(1 − 𝑈), 𝛾, 𝑡𝑖, ℎ𝑖(𝑡)) ↦→ 𝑝𝑡

The nice part about the first step is that there is no need to sample by inversion. Any sampling method will do, as long
as the exponential quantile is calculated.

28 Chapter 6. Detailed Description of Distributions

CTDE Documentation, Release 1.0

6.2.3 Cumulative Distributions for Next Reaction

The original form of the Next Reaction, by Gibson and Bruck, was written in terms, not of the hazards, but of the
cumulative distribution functions. This form remains useful because some distributions are much simpler, or more
accurate, to sample as cdfs instead of sampling from their hazard rates.

Returning to Eq. (6.2.2), this can be rewritten as

1 − 𝑈 = exp

(︂
−
∫︁ 𝑡1

0

ℎ0(𝑠)𝑑𝑠

)︂
exp

(︂
−
∫︁ 𝑡

𝑡1

ℎ1(𝑠)𝑑𝑠

)︂
In terms of the survival functions, this becomes

1 − 𝑈 = 𝐺0(0, 𝑡1)𝐺1(𝑡1, 𝑡)

If we wish to solve this for 𝑡, then, in terms of the survival, it looks like

𝐺1(𝑡1, 𝑡) =
1 − 𝑈

𝐺0(0, 𝑡1)

Writing the left-hand side as a cumulative distribution function requires the transformation

𝐺(𝑎, 𝑏) =
𝐺(𝑏)

𝐺(𝑎)
=

1 − 𝐹 (𝑏)

𝐺(𝑎)

so we have

𝐹1(𝑡) = 1 −𝐺1(𝑡1)
1 − 𝑈

𝐺0(0, 𝑡1)

This generalizes to many steps as

𝐹𝑗(𝑡) = 1 −𝐺𝑗(𝑡𝑗)(1 − 𝑈)

𝑗∏︁
𝑖

𝐺𝑖(𝑡𝑖)

𝐺𝑖(𝑡𝑖+1)

Let’s call the running product on the right 𝛿,

𝛿 =

𝑗∏︁
𝑖

𝐺𝑖(𝑡𝑖)

𝐺𝑖(𝑡𝑖+1)

Then the algorithm requires three operations

1. MeasuredSample—Sample the distribution, returning the quantile. Calling the random number generator,
“rng,” and the putative time 𝑡𝑝, it’s

(rng, ℎ0(𝑡)) ↦→ (𝑡𝑝, 1 − 𝑈) .

2. ConsumeSample—Consume remaining quantile for the next sample.

(𝛿𝑖, ℎ𝑖(𝑡), 𝑡𝑖) ↦→ (𝛿𝑖+1, 𝑡𝑖+1)

3. Putative—Generate a new putative time from the exponential quantile and the consumed hazard,

(1 − 𝑈, 𝛿𝑖, 𝑡𝑖, ℎ𝑖(𝑡)) ↦→ 𝑝𝑡

As you can see by comparison with the hazards version, it’s simple to write the algorithm to accommodate either
method of sampling. Therefore, each distribution can choose which interface to support.

6.2. Requirements for a Continuous-Time Simulation 29

CTDE Documentation, Release 1.0

6.3 Testing Distributions

6.3.1 EmpiricalDistribution

The type EmpiricalDistribution will estimate the mean and variance of a distribution, given samples from it. More
importantly, it can compare those samples with a given functional form of a distribution using the Kolmogorov-
Smirnov test. Often the distributions in this library have corresponding distributions in the main library, just with a
different interface.

There are test functions in after the definition of each distribution to do these tests.

6.3.2 Emulating Next Reaction Sampling

Take a MeasuredSample and then repeatedly consume the sample, with the same distribution, and finally use
Putative to get a value. It should agree with the original sample.

6.3.3 Exact Solution to Paradigmatic Systems

There are some stochastic systems, such as a random walk, or the SIR model, for which exact results are known for
certain distributions.

The Ball Nasell example shows this. It turns out there is a minor error in Ball Nasell we found this way. The Weiss
example makes a similar measurement.

6.4 Using Julia’s Distributions

Julia’s continuous univariate distributions support a fixed interface. In this section, we look at how to translate any
distribution into the operations above.

In this table, d is the distribution.

cdf(d,t) 𝐹 (𝑡)
quantile(d,q) 𝐹−1(𝑞)
logcdf(d,t) ln(𝐹 (𝑡))
ccdf(d,t) 𝐺(𝑡)

logccdf(d,t) −
∫︀ 𝑡

0
𝜆(𝑠)𝑑𝑠

quantile(d,q) 𝐹−1(𝑞)
cquantile(d,q) 𝐹−1(1 − 𝑞) = 𝐺−1(𝑞)
invlogcdf(d,lp) 𝐹−1(𝑒𝑙𝑝)

invlogccdf(d,lp) 𝐺−1(𝑒𝑙𝑝) or −
∫︀ 𝑡(𝑙𝑝)

0
𝜆(𝑠)𝑑𝑠 = 𝑙𝑝

randexp(rng) − ln(1 − 𝑈)

A shifted sample, from Eq. (6.2.1), which ends with

𝑡 = 𝑡𝑒 + 𝐹−1 [𝑈(1 − 𝐹 (𝑡0 − 𝑡𝑒)) + 𝐹 (𝑡0 − 𝑡𝑒)]

transliterates to

Listing 6.1: wrappeddistribution.jl

30 Chapter 6. Detailed Description of Distributions

CTDE Documentation, Release 1.0

function MeasuredSample(d::WrappedDistribution, t0::Float64, rng)
U=rand(rng)
te=d.enabling_time
value=te+quantile(d.relative_distribution,

U+(1-U)*cdf(d.relative_distribution, t0-te))
(value, -log(1-U))

end

The next two pieces concern the hazard. The goal is to find the integral of the hazard between two absolute times, 𝑡1
and 𝑡2, where both are 𝑡1,2 ≥ 𝑡0. This is∫︁ 𝑡2−𝑡𝑒

𝑡1−𝑡𝑒

𝜆(𝑠)𝑑𝑠 =

∫︁ 𝑡2−𝑡𝑒

0

𝜆(𝑠)𝑑𝑠−
∫︁ 𝑡1−𝑡𝑒

0

𝜆(𝑠)𝑑𝑠.

In terms of the given methods, this would be, noting the minus sign in the table,

Listing 6.2: wrappeddistribution.jl

function ConsumeSample(dist::WrappedDistribution, xa, start, finish)
if xa<0

xa=0
end
xa+HazardIntegral(dist, start, finish)

end

function HazardIntegral(dist::WrappedDistribution, t1, t2)
logccdf is log(1-cdf(d, x))
rel=dist.relative_distribution
te=dist.enabling_time
logccdf(rel, t1-te)-logccdf(rel, t2-te)

end

Looking back to Eq. (6.2.2), ∫︁ 𝑡

𝑡1

ℎ1(𝑠)𝑑𝑠 = − ln(1 − 𝑈) −
∫︁ 𝑡1

0

ℎ0(𝑠)𝑑𝑠, (6.-15)

we can label xa the combination of the exponential quantile and the sums of integrals on the right-hand side.

Listing 6.3: wrappeddistribution.jl

function Putative(dist::WrappedDistribution, when,
interval, consumed_interval)

ImplicitHazardIntegral(dist, interval-consumed_interval, when)
end

function ImplicitHazardIntegral(dist::WrappedDistribution, xa, t0)
rel=dist.relative_distribution
te=dist.enabling_time
t=te+invlogccdf(rel, -xa+logccdf(rel, t0-te))
@assert(t>=t0)
t

end

6.4. Using Julia’s Distributions 31

CTDE Documentation, Release 1.0

6.5 Exponential

The exponential distribution is constructed with a hazard rate, even though the internal distributions object uses a scale,
which is 𝜃 = 1/𝜆,

Listing 6.4: exponentialdistribution.jl

type TransitionExponential <: TransitionDistribution
hazard::Float64
enabling_time::Float64
TransitionExponential(rate::Real)=new(rate, 0.0)

end

It doesn’t matter how we sample the distribution, as long as we return its quantile. This samples using
Base.randexp, which uses the ziggurat method for a sample that’s much faster than inversion. The value returned
by randexp is equivalent to − ln(1 − 𝑈).

Listing 6.5: exponentialdistribution.jl

function MeasuredSample(d::TransitionExponential, now::Float64, rng)
u=randexp(rng)
(now+u/d.hazard, u)

end

The hazard integral for constant hazards is (𝑡2 − 𝑡1)𝜆.

Listing 6.6: exponentialdistribution.jl

function HazardIntegral(dist::TransitionExponential, start, finish)
@assert(finish>=start)
(finish-start)*dist.hazard

end

function ConsumeSample(dist::TransitionExponential, xa, start, finish)
xa = xa<0 ? 0 : xa
xa+HazardIntegral(dist, start, finish)

end

Even inverting the hazard integral is an increment with a multiplication.

32 Chapter 6. Detailed Description of Distributions

CTDE Documentation, Release 1.0

Listing 6.7: exponentialdistribution.jl

function ImplicitHazardIntegral(dist::TransitionExponential,
cumulative_hazard, current_time)

@assert(cumulative_hazard>=0)
current_time+cumulative_hazard/dist.hazard

end

function Putative(dist::TransitionExponential, when,
interval, consumed_interval)

ImplicitHazardIntegral(dist, interval-consumed_interval, when)
end

6.6 Weibull

Like the exponential distribution, the Weibull distribution has an integrable hazard rate, which makes implementation
straightforward. Unfortunately, the use of the parameter 𝜆 in the definition of the Weibull is at odds with our use of it
as a hazard rate, but it’s just a scale parameter here.

𝐹 (𝑡) = 1 − exp

[︃(︂
𝑡− 𝑡𝑒
𝜆

)︂𝑘
]︃

The constructor uses this cdf.

Listing 6.8: weibulldistribution.jl

type TransitionWeibull <: TransitionDistribution
parameters::Array{Float64,1}
te::Float64
TransitionWeibull(lambda, k)=new([lambda, k], 0.0)

end

From the cdf, the hazard rate is

Λ(𝑡) =

∫︁ 𝑡

0

𝜆(𝑠)𝑑𝑠 =

(︂
𝑡− 𝑡𝑒
𝜆

)︂𝑘

The inverse, where we ask when the integral equals 𝑙𝑢 = − ln(1 − 𝑈), is

𝑡 = 𝑡𝑒 + 𝜆𝑙(𝑢1/𝑘)

The version in the code is overachieving because it allows for shifting the distribution.

Listing 6.9: weibulldistribution.jl

function MeasuredSample(distribution::TransitionWeibull, now::Float64, rng)
(𝜆, k)=distribution.parameters
d=now-distribution.te
value=0
mlogU=randexp(rng)
if d>0

Given that the hazard is already integrated in Eq. (6.6), integrating the hazard is algebraic.

Listing 6.10: weibulldistribution.jl

6.6. Weibull 33

CTDE Documentation, Release 1.0

function HazardIntegral(dist::TransitionWeibull, last, now)
(𝜆, k)=dist.parameters
if now-dist.te>eps(Float64)

return ((now-dist.te)/𝜆)^k - ((last-dist.te)/𝜆)^k
else

return 0::Float64
end

end

function ConsumeSample(dist::TransitionWeibull, xa, start, finish)
xa=(xa<0) ? 0 : xa
xa+HazardIntegral(dist, start, finish)

end

Listing 6.11: weibulldistribution.jl

function ImplicitHazardIntegral(dist::TransitionWeibull,
cumulative_hazard, when)

(𝜆, k)=dist.parameters
if when-dist.te>eps(Float64)

return dist.te + 𝜆*(cumulative_hazard + ((when-dist.te)/𝜆)^k)^(1.0/k)
else

return dist.te + 𝜆*(cumulative_hazard)^(1.0/k)
end

end

function Putative(dist::TransitionWeibull, when,
interval, consumed_interval)

ImplicitHazardIntegral(dist, interval-consumed_interval, when)
end

6.7 Log-Logistic

Working from wikipedia, because Gradstein and Ryzhik is too heavy to lift.

𝐹 (𝑥;𝛼, 𝛽) =
1

1 + (𝑥/𝛼)−𝛽
.

We shift this to

𝐹 (𝑡, 𝑡𝑒) =
1

1 + ((𝑡− 𝑡𝑒)/𝛼)−𝛽
.

The pdf is

𝑓(𝑥;𝛼, 𝛽) =
(𝛽/𝛼)(𝑥/𝛼)𝛽−1

(1 + (𝑥/𝛼)𝛽)2
.

The quantile is

𝐹−1(𝑝;𝛼, 𝛽) = 𝛼

(︂
𝑝

1 − 𝑝

)︂1/𝛽

.

Survival

𝐺(𝑡) = 1 − 𝐹 (𝑡) =
1

1 + (𝑡/𝛼)𝛽
.

34 Chapter 6. Detailed Description of Distributions

CTDE Documentation, Release 1.0

Hazard

𝜆(𝑡) =
𝑓(𝑡)

𝐺(𝑡)
=

(𝛽/𝛼)(𝑡/𝛼)𝛽−1

1 + (𝑡/𝛼)𝛽

Lastly, we need invlogccdf(d,lp), which is 𝐺−1
𝑑 (𝑒𝑙𝑝), or −

∫︀ 𝑡

0
(𝑙𝑝)𝜆(𝑠)𝑑𝑠 = 𝑙𝑝.

𝑙𝑝 = ln(𝐺(𝑡))

𝑒𝑙𝑝 = 𝐺(𝑡)

𝑒𝑙𝑝 =
1

1 + (𝑡/𝛼)𝛽

𝑒−𝑙𝑝 = 1 + (𝑡/𝛼)𝛽

(𝑡/𝛼)𝛽 = 1 − 𝑒−𝑙𝑝

𝑡/𝛼 = (1 − 𝑒−𝑙𝑝)1/𝛽

𝑡 = 𝛼(1 − 𝑒−𝑙𝑝)1/𝛽

6.8 Gamma

We will define paramaters from the shape 𝛼 and rate 𝛽.

𝑓(𝑥) =
𝛽𝛼

Γ(𝛼)
𝑥𝛼−1𝑒−𝛽𝑥

where

Γ(𝑡) =

∫︁ ∞

0

𝑥𝑡−1𝑒−𝑥𝑑𝑥.

The CDF is

𝐹 (𝑥;𝛼, 𝛽) =
𝛾(𝛼, 𝛽𝑥)

Γ(𝛼)

where 𝛾 is the (lower) incomplete gamma function,

𝛾(𝑥;𝛼) =

∫︁ 𝑥

0

𝑡𝛼−1𝑒−𝑡𝑑𝑡

In our back pocket, from Boost::Math, are Γ(𝑥), ln(|Γ(𝑥)|), digamma, which is

𝜓(𝑥) =
𝑑

𝑑𝑥
ln(Γ(𝑥)) =

Γ′(𝑥)

Γ(𝑥)
,

gamma ratio, which is Γ(𝑎)/Γ(𝑏), gamma delta ratio, which is Γ(𝑎)/Γ(𝑎 + ∆), and the set of incomplete gamma
functions. In order, they are normalized lower incomplete, normalized upper, incomplete full (non-normalized) lower
incomplete, and full (non-normalized) upper incomplete gamma functions.

gamma_p(𝑎, 𝑧) =
𝛾(𝑎, 𝑧)

Γ(𝑎)
=

1

Γ(𝑎)

∫︁ 𝑧

0

𝑡𝑎−1𝑒−𝑡𝑑𝑡

gamma_q(𝑎, 𝑧) =
Γ(𝑎, 𝑧)

Γ(𝑎)
=

1

Γ(𝑎)

∫︁ 0

𝑧

𝑡𝑎−1𝑒−𝑡𝑑𝑡

tgamma_lower(𝑎, 𝑧) = 𝛾(𝑎, 𝑧) =

∫︁ 𝑧

0

𝑡𝑎−1𝑒−𝑡𝑑𝑡

tgamma(𝑎, 𝑧) = Γ(𝑎, 𝑧) =
1

Γ(𝑎)

∫︁ 0

𝑧

𝑡𝑎−1𝑒−𝑡𝑑𝑡

6.8. Gamma 35

CTDE Documentation, Release 1.0

There are a set of inverses of incomplete gamma functions and derivatives of incomplete gamma functions. OK, back
to what we need.

𝐹 (𝑥;𝛼, 𝛽) = gamma_p(𝛼, 𝛽𝑥)

𝐹−1(𝑦;𝛼, 𝛽) = gamma_p_inv(𝛼, 𝑦)/𝛽

The hazard integral, in terms of the cdf, is∫︁ 𝑡2−𝑡𝑒

𝑡1−𝑡𝑒

𝜆(𝑠)𝑑𝑠 = − ln(1 − 𝐹 (𝑡2 − 𝑡𝑒)) + ln(1 − 𝐹 (𝑡1 − 𝑡𝑒))

= ln

[︂
1 − 𝐹 (𝑡1 − 𝑡𝑒)

1 − 𝐹 (𝑡2 − 𝑡𝑒)

]︂
.

Can we simplify this into something provided?

∫︁ 𝑡2−𝑡𝑒

𝑡1−𝑡𝑒

𝜆(𝑠)𝑑𝑠 = ln

⎡⎣1 − 𝛾(𝛼,𝛽(𝑡1−𝑡𝑒))
Γ(𝛼)

1 − 𝛾(𝛼,𝛽(𝑡2−𝑡𝑒))
Γ(𝛼)

⎤⎦
= ln

[︂
Γ(𝛼) − 𝛾(𝛼, 𝛽(𝑡1 − 𝑡𝑒))

Γ(𝛼) − 𝛾(𝛼, 𝛽(𝑡2 − 𝑡𝑒))

]︂
𝛾(𝛼, 𝛽(𝑡1 − 𝑡𝑒)) =

∫︁ 𝛽(𝑡1−𝑡𝑒)

0

𝑡𝛼−1𝑒−𝑡𝑑𝑡

It looks like we might do best just with

Ga=tgamma(a)
hazint(te, t1, t2)=log((Ga-tgamma_lower(a,b*(t1-te)))/

(Ga-tgamma_lower(a,b*(t2-te))))

Our other goal for Gamma distributions is to get the inverse hazard. This can be seen as two steps. First find the
integral

𝑙𝑝 = −𝑥+

[︂∫︁ 𝑡0−𝑡𝑒

0

𝜆(𝑠)𝑑𝑠

]︂
.

Then solve for 𝑡′ in

𝑙𝑝 = −
∫︁ 𝑡′−𝑡𝑒

0

𝜆(𝑠)𝑑𝑠.

Or, we could write this as

𝑙𝑒 = 𝑒−𝑥𝑒−
∫︀ 𝑡0−𝑡𝑒
0

𝜆(𝑠)𝑑𝑠 = 𝑒−𝑥(1 − 𝐹 (𝑡0 − 𝑡𝑒))

and

𝑙𝑒 = 𝑒−
∫︀ 𝑡′−𝑡𝑒
0

𝜆(𝑠)𝑑𝑠 = 1 − 𝐹 (𝑡′ − 𝑡𝑒).

All at once,

𝐹 (𝑡′ − 𝑡𝑒) = 1 − 𝑒−𝑥(1 − 𝐹 (𝑡0 − 𝑡𝑒))

𝑡′ = 𝑡𝑒 + 𝐹−1
(︀
1 − 𝑒−𝑥(1 − 𝐹 (𝑡0 − 𝑡𝑒))

)︀
.

𝐹 (𝑡0 − 𝑡𝑒) = gamma_p(𝛼, 𝛽(𝑡0 − 𝑡𝑒))

𝐹−1(𝑦) = gamma_p_inv(𝛼, 𝑦)/𝛽

So here is our inverse hazard integral.

36 Chapter 6. Detailed Description of Distributions

CTDE Documentation, Release 1.0

quad=1-exp(-x)*(1-gamma_p(a,b*(t0-te)))
tp=te + gamma_p_inv(a, quad)/b

6.9 Uniform Distribution

Maybe this one will be easier. This distribution has two parameters, a start time and an end time, 𝑡𝑎 and 𝑡𝑏. The pdf is
constant, 𝑓(𝑡) = 1/(𝑡𝑏 − 𝑡𝑎) between 𝑡𝑎 ≤ 𝑡 < 𝑡𝑏. The CDF is just the integral of that, 𝐹 (𝑡) = (𝑡 − 𝑡𝑎)/(𝑡𝑏 − 𝑡𝑎).
The integrated hazard will have nonzero cases for for 𝑡1 < 𝑡𝑎 < 𝑡2 < 𝑡𝑏, 𝑡1 < 𝑡𝑎 < 𝑡𝑏 < 𝑡2, 𝑡𝑎 < 𝑡1 < 𝑡2 < 𝑡𝑏,
𝑡𝑎 < 𝑡1 < 𝑡𝑏 < 𝑡2. It is zero for 𝑡1 < 𝑡2 < 𝑡𝑎 and 𝑡𝑎 < 𝑡𝑏 < 𝑡1 < 𝑡2∫︁ 𝑡2−𝑡𝑒

𝑡1−𝑡𝑒

𝜆(𝑠)𝑑𝑠 = ln

[︂
1 − 𝐹 (𝑡1 − 𝑡𝑒)

1 − 𝐹 (𝑡2 − 𝑡𝑒)

]︂
If 𝑡𝑎 ≤ 𝑡𝑛 − 𝑡𝑒 < 𝑡𝑏, then 𝐹 (𝑡𝑛 − 𝑡𝑒) = (𝑡𝑛 − 𝑡𝑒 − 𝑡𝑎)/(𝑡𝑏 − 𝑡𝑎). Otherwise it is 0 or 1. It should never be the
case that a uniform distribution does not fire before 𝑡𝑏. The hazard integral always sums over time already past in the
simulation. Nevertheless, it will be necessary to check for overflow near 𝑡𝑏, and it would help to keep the two logs
separated, instead of in the fraction.

What about the inverse of the hazard integral? 𝐹−1(𝑥) = 𝑡𝑎 + (𝑡𝑏 − 𝑡𝑎)𝑥 Therefore, for 𝑡𝑎 ≤ 𝑡0 − 𝑡𝑒,

𝑡′ = 𝑡𝑒 + 𝑡𝑎 + (𝑡𝑏 − 𝑡𝑎)

[︂
1 − 𝑒−𝑥

(︂
1 − 𝑡0 − 𝑡𝑒 − 𝑡𝑎

𝑡𝑏 − 𝑡𝑎

)︂]︂
and for 𝑡0 − 𝑡𝑒 < 𝑡𝑎,

𝑡′ = 𝑡𝑒 + 𝑡𝑎 + (𝑡𝑏 − 𝑡𝑎)
[︀
1 − 𝑒−𝑥

]︀

6.10 Triangular Distribution

The cumulative distribution function for the triangular distribution with endpoints 𝑎 and 𝑏 and midpoint 𝑚 is

(𝑡− 𝑎)2

(𝑏− 𝑎)(𝑚− 𝑎)
𝑎 ≤ 𝑡 ≤ 𝑚

1 − (𝑏− 𝑡)2

(𝑏− 𝑎)(𝑏−𝑚)
𝑚 < 𝑡 ≤ 𝑏.

This makes the survival

1 − (𝑡− 𝑎)2

(𝑏− 𝑎)(𝑚− 𝑎)
𝑎 ≤ 𝑡 ≤ 𝑚

(𝑏− 𝑡)2

(𝑏− 𝑎)(𝑏−𝑚)
𝑚 < 𝑡 ≤ 𝑏.

6.10.1 Simple Sample

The cutoff is at 𝑡 = 𝑚, which is

𝑈 ′ =
(𝑚− 𝑎)2

(𝑏− 𝑎)(𝑚− 𝑎)

=
𝑚− 𝑎

𝑏− 𝑎

6.9. Uniform Distribution 37

CTDE Documentation, Release 1.0

so first check whether 𝑈 is greater than that. Then, for 𝑈 less than that,

𝑡 = 𝑎+ [𝑈(𝑏− 𝑎)(𝑚− 𝑎)]
1/2

𝑈 ≤ 𝑈 ′

𝑡 = 𝑏− [(1 − 𝑈)(𝑏− 𝑎)(𝑏−𝑚)]
1/2

𝑈 ′ < 𝑈

6.10.2 Shifted Sample

If this is sampled after some time, 𝑥, then the thing we want to invert is

𝑈 =
𝐹 (𝑡) − 𝐹 (𝑥)

𝐺(𝑥)

so

𝐹 (𝑡) = 𝑈𝐺(𝑥) + 𝐹 (𝑥)

which, for 𝑎 < 𝑡 ≤ 𝑚 and 𝑎 < 𝑥 ≤ 𝑚, is

(𝑡− 𝑎)2

(𝑏− 𝑎)(𝑚− 𝑎)
= 𝑈

[︂
1 − (𝑥− 𝑎)2

(𝑏− 𝑎)(𝑚− 𝑎)

]︂
+

(𝑥− 𝑎)2

(𝑏− 𝑎)(𝑚− 𝑎)

(𝑡− 𝑎)2 = 𝑈(𝑏− 𝑎)(𝑚− 𝑎) + (1 − 𝑈)(𝑥− 𝑎)2

𝑡 = 𝑎+
[︀
𝑈(𝑏− 𝑎)(𝑚− 𝑎) + (1 − 𝑈)(𝑥− 𝑎)2

]︀1/2
For 𝑚 < 𝑡 ≤ 𝑏 and 𝑚 < 𝑥 ≤ 𝑏, this is

1 − (𝑏− 𝑡)2

(𝑏− 𝑎)(𝑏−𝑚)
= 𝑈

(𝑏− 𝑥)2

(𝑏− 𝑎)(𝑏−𝑚)
+ 1 − (𝑏− 𝑥)2

(𝑏− 𝑎)(𝑏−𝑚)

−(𝑏− 𝑡)2 = 𝑈(𝑏− 𝑥)2 − (𝑏− 𝑥)2

𝑡 = 𝑏− (𝑏− 𝑥)
√

1 − 𝑈

In the case that 𝑚 < 𝑡 ≤ 𝑏 and 𝑎 < 𝑥 ≤ 𝑚, the result is

1 − (𝑏− 𝑡)2

(𝑏− 𝑎)(𝑏−𝑚)
= 𝑈

[︂
1 − (𝑥− 𝑎)2

(𝑏− 𝑎)(𝑚− 𝑎)

]︂
+

(𝑥− 𝑎)2

(𝑏− 𝑎)(𝑚− 𝑎)

1 − (𝑏− 𝑡)2

(𝑏− 𝑎)(𝑏−𝑚)
= 𝑈 +

(𝑥− 𝑎)2(1 − 𝑈)

(𝑏− 𝑎)(𝑚− 𝑎)

(𝑏− 𝑡)2

(𝑏− 𝑎)(𝑏−𝑚)
= (1 − 𝑈) − (𝑥− 𝑎)2(1 − 𝑈)

(𝑏− 𝑎)(𝑚− 𝑎)

(𝑏− 𝑡)2 = (1 − 𝑈)(𝑏− 𝑎)(𝑏−𝑚) − (𝑥− 𝑎)2(1 − 𝑈)(𝑏−𝑚)

(𝑚− 𝑎)

𝑡 = 𝑏−
[︂
(1 − 𝑈)(𝑏− 𝑎)(𝑏−𝑚) − (𝑥− 𝑎)2(1 − 𝑈)(𝑏−𝑚)

(𝑚− 𝑎)

]︂1/2

6.10.3 Sampling from Quantile

The equation we have to solve is

𝐹 (𝑡) = 1 −𝐺(𝑡𝑗)(1 − 𝑢)
∏︁
𝑖

𝐺𝑖(𝑡𝑖)

𝐺𝑖(𝑡𝑖+1)
,

given to us as

𝐹 (𝑡) = 1 −𝐺(𝑡𝑗)(1 − 𝑢)𝛾,

38 Chapter 6. Detailed Description of Distributions

CTDE Documentation, Release 1.0

so, in terms of survivals, it’s

𝐺(𝑡) = 𝐺(𝑡𝑗)(1 − 𝑢)𝛾

The value on the right is all known. If 𝑡𝑗 < 𝑚, the cutoff is

𝐺′ =
𝑏−𝑚

(𝑏− 𝑎)(𝑏−𝑚)

Below that,

6.10. Triangular Distribution 39

CTDE Documentation, Release 1.0

40 Chapter 6. Detailed Description of Distributions

CHAPTER 7

References

41

CTDE Documentation, Release 1.0

42 Chapter 7. References

CHAPTER 8

Indices and tables

• genindex

• modindex

• search

43

CTDE Documentation, Release 1.0

44 Chapter 8. Indices and tables

Bibliography

[Anderson:2007] 4. (a) Anderson, “A modified next reaction method for simulating chemical systems with time
dependent propensities and delays.,” J. Chem. Phys., vol. 127, no. 21, p. 214107, Dec. 2007.

[Gillespie:1978] 4. (a) Gillespie, “Monte Carlo simulation of random walks with residence time dependent tran-
sition probability rates,” J. Comput. Phys., vol. 28, no. 3, pp. 395–407, Sep. 1978.

[Grimm2010] 22. Grimm, U. Berger, D. L. DeAngelis, J. G. Polhill, J. Giske, and S. F. Railsback, “The ODD
protocol: A review and first update,” Ecol. Modell., vol. 221, no. 23, pp. 2760–2768, Nov. 2010.

[Hartig2011] 6. Hartig, J. M. Calabrese, B. Reineking, T. Wiegand, and A. Huth, “Statistical inference for stochas-
tic simulation models–theory and application.,” Ecol. Lett., vol. 14, no. 8, pp. 816–27, Aug. 2011.

[Howard:1971] R. A. Howard, “Dynamic Probabilistic Systems. Vol. II: Semi-Markov and Decision Processes” (J.
Wiley and Sons, 1971).

[Howard2007] 18. (a) Howard, Dynamic Probabilistic Systems: Semi-Markov and Decision Processes. Mineola,
NY: Dover, 2007.

[Meyers:2013] Scott Meyers, The new C++.

[Pyke1961] 18. Pyke, “Markov Renewal Process: Definition and Preliminary Properties,” Ann. Math. Stat., vol. 32,
no. 4, pp. 1231–1242, 1961.

[Stocks:1931] P. Stocks, “Incubation period of measles,” British Medical Journal 1(3655): p. 157.

[Viet:2004] A.-F. Viet, C. Fourichon, H. Seegers, C. Jacob, and C. Guihenneuc-Jouyaux, “A model of the spread of
the bovine viral-diarrhoea virus within a dairy herd.,” Prev. Vet. Med., vol. 63, no. 3–4, pp. 211–36, May 2004.

45

http://www.aristeia.com/C++11.html

CTDE Documentation, Release 1.0

46 Bibliography

Index

C
cdf() (built-in function), 19

E
EmpiricalDistribution (built-in class), 20
EmpiricalDistribution() (built-in function), 20
Enabled() (built-in function), 16
EnablingTime() (built-in function), 19

F
FiringFunction() (built-in function), 20
FixedDirect (built-in class), 21
FixedDirect() (built-in function), 21

H
HazardIntegral() (built-in function), 18

I
ImplicitHazardIntegral() (built-in function), 18
Intensity (built-in class), 16
invariant() (built-in function), 17

K
kolmogorov_smirnov_statistic() (built-in function), 20

M
mean() (built-in function), 20
MemoryIntensity (built-in class), 16
MemoryIntensity() (built-in function), 16
MemorylessIntensity (built-in class), 17

N
NaiveSampler (built-in class), 21
NelsonAalenDistribution (built-in class), 19
NextReactionHazards (built-in class), 21
NextReactionHazards() (built-in function), 21

P
Parameters() (built-in function), 19

Putative() (built-in function), 16

S
Sample() (built-in function), 16
StateObserver() (built-in function), 20

T
TransitionDistribution (built-in class), 18
TransitionExponential() (built-in function), 19
TransitionGamma() (built-in function), 19
TransitionLogLogistic() (built-in function), 19
TransitionWeibull() (built-in function), 19

V
variance() (built-in function), 20

W
WrappedDistribution (built-in class), 18
WrappedDistribution() (built-in function), 18

47

	Introduction
	Organization of library
	Acknowledgements
	Availability and distribution

	Installation
	Background
	The Hazard from Survival Analysis
	Finite State Machines Generate Trajectories
	Markov Chain for Discrete-Time Trajectories
	Markov Process for Continuous-Time Trajectories

	CTDE API
	Physical State
	Partial Process
	Transitions
	Intensity
	Transition Distributions
	Firing Function
	Simulation Observer
	Sampler
	Running a Simulation

	Examples
	Detailed Description of Distributions
	Notation
	Requirements for a Continuous-Time Simulation
	Testing Distributions
	Using Julia's Distributions
	Exponential
	Weibull
	Log-Logistic
	Gamma
	Uniform Distribution
	Triangular Distribution

	References
	Indices and tables
	Bibliography

