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Continuous Time Discrete Event (CTDE)

A Julia library for stochastic simulation in continuous-time
with time-dependent hazard rates.
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Introduction

The CTDE library is designed to streamline the process of
creating efficient simulations of a large class of stochastic processes
as defined by Anderson and Kurtz[Anderson:2007]_.  These processes naturally
arise in many contexts including epidemiology [Viet:2004], physiology,
ecology, atmospheric sciences, reliability engineering and risk
management.  This broad range of applications suggest the value of
designing a generic library for simulating complex semi-Markov
processes, independent of the particular application area.

The unifying idea on which this library is based is that there
typically are many different pathways for a complex system to evolve
between timesteps.  Each pathway can be viewed as an elementary
stochastic process with a user specified time-dependent transition
rates and a rule for modifying the overall internal state of the
system.  At each instant of time, these elementary processes
“compete”, figuratively speaking, for the chance to change the state
of the whole system.  Each time step in the simulation corresponds to
an event – a “winner” is selected thus changing the internal state of
the system and the sampling from the corresponding statistical
distribution to determine the time increment.  This competing process
view provides a framework for users to develop simulations for complex
models in an incremental manner.

It is easy to show that competing processes with exponentially
distributed transition times have time-independent transition rates.
This is the norm in some application areas such as chemical kinetics.
In contrast, it is manifestly inappropriate for many biological
applications such as physiology, ecology and epidemiology.  For
example, a classic paper by Stocks [Stocks:1931] clearly shows that
the latent period for measles (the distribution times between
infection and the appearance of symptoms) does not follow an
exponential distribution. Stocks’ raw data from cases in London circa
1931, along with optimal fits to exponential, gamma, Weibull, and
log-normal distributions computed using the SciPy statistical
library, are shown in Figure 1.  Distribution of latent periods for measles in London
circa 1931.  The fit of the data to
the exponential distribution is very poor while the fits to the other
distributions are very good.



Figure 1.  Distribution of latent periods for measles in London
circa 1931



This simple example shows that exclusive reliance on exponential
distributions may lead systematic biases in stochastic simulations of
epidemiological process.  Therefore, this library provides support for
general semi-Markov models based on competing processes with general
probability distributions of transition times.


Organization of library

It is implemented using three cooperating layers:


	Finite state machine: High-level interface for initializing the
system, iterating over time steps and gathering relevant tracing
data for post-processing.

	Process Specification: “Middleware” responsible for specifying
a simulation with given constraints.

	Competing Clocks Process: Low-level coordination and
bookkeeping related to the user-defined competing processes
including distributions of transition times, modification of system
state and various dependence relati



This organization has many practical advantages:


	The competing clocks process layer can be viewed as a very efficient,
general purpose, stochastic simulation engine that supports
arbitrary statistical distributions for event times.  This layer
contains no model-specific user code, thus can be independently
verified and validated.

	Typically, the itself model is completely defined by instantiating
a state and transitions on that state, connected by a dependency
graph. The underlying code does bookkeeping to track causality through
the dependency graph.

	The library strictly enforces a separation of the static components
that define the structural aspects of the model and the dynamic
components that define the evolving state during a simulation.  This
separation makes it possible to detect many critical programming
errors associated with multithreading at compile time.
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Availability and distribution

This library is in the public domain.
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Installation

This library is written in the Julia [http://julialang.org/downloads/] language.

Pkg.clone("git@github.com:adolgert/CTDE.jl.git")





It project requires the following packages, which should install when you run Pkg.clone.



	Distributions

	DataStructures

	Logging






The examples will also require the Gadfly package.
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Background

This addresses two main points, how to specify a model for
the library using distributions defined by hazards and
why such a specification, with its initial conditions,
is sufficient to define the trajectory for a model.


The Hazard from Survival Analysis


Discrete case

The discrete case is much easier to understand than the continuous
case because it can be explained without employing any results from
calculus.  Throughout this section, \(\bf{X}\) will be assumed to
real-valued random variable.  For example, \(\bf{X}\) could
represent latent periods for measles.

It frequently happens that random samples of the real valued variables
such as \(\bf{X}\) are actually analyzed on a discrete scale.
For example Stocks’ data on latent periods of measles in
Figure 1.  Distribution of latent periods for measles in London
circa 1931 is based on daily visits by patients.

The (cumulative) distribution of \(\bf{X}\) is defined as


\[F_{X}(k) = \mathcal{P}[x \le k]\]

assuming \(F_{X}(\infty) = 1\).  The
density can be expressed as the difference in adjacent values of the
distribution


\[\begin{eqnarray}
f_{X}(k) & = & \mathcal{P}[X=k] \\
         & = & \mathcal{P}[X\le k] - \mathcal{P}[X \le k-1 ] \\
         & = & F_{X}(k) - F_{X}(k-1)
\end{eqnarray}\]
For Stocks’ data in Figure 1.  Distribution of latent periods for measles in London
circa 1931, the density at day \(k\)
should be interpreted as the probability of the appearance of symptoms
since the previous visit on day \(k-1\).

The hazard is defined as the conditional probability that the value
of a random selection from \(\bf{X}\) equals \(k\) given it
this value is already known to exceed \(k-1\).  Using the usual
rules for computing conditional probabilities, the hazard is given by
the following ratio


\[\begin{split}\begin{eqnarray}
h_{X}(k) & = & \mathcal{P}[X=k\; |\; k-1<X] \\
         & = & {\frac{f_{X}(k)}{1 - F_{X}(k-1)}}
\end{eqnarray}\end{split}\]

In the case of Stocks’ data, the hazards shown in
Figure 2.  Estimated hazards of latent periods for measles in
London circa 1931 would correspond to the probability of
symptoms appearing at day \(k\) given that the patient had not
displayed symptoms at any previous visit.  As time goes on, patients
who have already developed symptoms effectively reduce the pool of
patients in the study who are still in a state where they might first
present symptoms on day \(k\).  This is the origin of the term in
the denominator.



Figure 2.  Estimated hazards of latent periods for measles in
London circa 1931



On any given day, the hazard for latent periods can be interpreted as
the rate of appearance of symptoms per asymptomatic (infected but not
yet symptomatic) patient per day.  For example, the hazard inferred
from the Weibull distribution is approximately \(0.15\) on day 10.
In other words, 15% of the patients that are asymptomatic on day 9
will present symptoms when examined on day 10.



Figure 3. Each participant of the Stocks study could either
become symptomatic or leave the study. Focusing on the
hazard accounts for the effect of those who leave.



This interpretation is extremely important because it connects a
hazard with a rate for a specific process, and that rate has well
defined units of measurement.  In addition, it clarifies how rate
parameters should be estimated from observational data.  Failure to
account for the shrinking pool over time is commonplace.  In this case
it would lead to a systematic errors in the estimation of process
rates, especially at long times when the depletion effect is most
pronounced.




Continuous case

The random variable \(\bf{X}\) is again assumed to be a
real-valued, but the measurements will not be binned as above.
The cumulative distribution not an integer \(k\) but a continuous
time interval, \(\tau\).


\[F_X(\tau)=P[x\le\tau]\]

assuming \(F_X(\infty)=1\). The density is the derivative
of the cumulative distribution. The concept of the hazard is
part of survival analysis, where survival is
\(G_X(\tau)=1-F_X(\tau)\), and represents the probability
the random variable, a time interval, is longer than \(\tau\).
One expression for the hazard is that the density of the random
variable is equal to the probability it survives to a time \(\tau\)
multiplied by the hazard rate for firing at time \(\tau\), or, in
probabilities,


\[\begin{split}P[\tau<x\le\tau+d\tau]d\tau=P[\tau<x]P[\tau<x\le\tau+d\tau+d\tau|\tau<x].\end{split}\]

Writing this same equation with its almost-sure equivalents defines
the continuous hazard, \(\lambda_X(\tau)\),


\[f_X(\tau)=G_X(\tau)\lambda_X(\tau).\]

This is a rearrangement away from the definition of the discrete case.






Finite State Machines Generate Trajectories

This library accepts a specification of a model in terms of
hazards, an initial condition, and produces trajectories.
This set of high-level steps to simulation (specify, initialize,
step) has a well-defined abstraction called a finite state machine.
It isn’t the finite state machine familiar to programmers but a
mathematical model, coming from category theory, for a particularly
simple class of computing systems.  At a conceptual level, a finite
state machine can be considered a black box that receives a sequence
of input signal and produces an output signal for each input signal.
Internally, the black box maintains a state – some sort of finite
summary representation of the sequence of input signals encountered so
far.  For each input signal, the box performs two operations.  In both
cases, the decision depends on the current internal state and the
identity of the input signal just received.


	Chose next state

	Generate output token



It is helpful to view the finite state machine layer as a mechanism to
simulate a Markov chain or Markov process.




Markov Chain for Discrete-Time Trajectories

Roughly speaking, a Markov chain, \(\bf{X}\), is a probabilistic
system that makes random jumps among a finite set of distinct states,
\(s_0, s_1, s_2, \ldots, s_N\) such that the probability of
choosing the next state, \(X_{n+1}\) depends only on the current
state, \(X_n\).  In mathematical terms, the conditional
probabilities for state transitions must satisfy


\[\mathcal{P}[X_{n+1} = s_{l} | X_0=s_i, X_1=s_j, \ldots, X_n=s_k] =
\mathcal{P}[X_{n+1} = s_{l} | X_{n}=s_k]\]

Since more distant history does not affect future behavior, Markov
chains are sometimes characterized as memoryless.

This relation can be iterated to compute
the conditional probabilities for multiple time steps


\[\mathcal{P}[X_{n+2} = s_{m} | X_n=s_k] = \sum_{l} \mathcal{P}[X_{n+2} = s_{m} |
X_{n+1}=s_l] \mathcal{P}[X_{n+1} = s_{l} | X_{n}=s_k]\]

Note, the transition probabilities \(\mathcal{P}[X_{n+1} = s_{l} |
X_{n}=s_k]\) may depend on time (through the index \(n\)).  These so-called
time-inhomogeneous Markov chains arise when the system of interest is
driven by external entities.  Chains with time-independent conditional
transition probabilities are called time-homogeneous.  The dynamics of
a time-homogeneous Markov chain is completely determined by the
initial state and the transition probabilities.  All processes
considered in this document are time-homogeneous.




Markov Process for Continuous-Time Trajectories

A Markov process is a generalization of
the Markov chain such that time is viewed as continuous rather than
discrete.  As a result, it makes sense to record the times at which
the transitions occur as part of the process itself.

The first step in this generalization is to define a stochastic
process \(\bf{Y}\) that includes the transition times as well as
the state, \(Y_{n} = (s_{j},t_{n})\).

The second step is to treat time on a truly continuous basis by
defining a new stochastic process, \(\bf{Z}\), from \(\bf{Y}\)
by the rule \(Z_{t} = s_k\) in the time interval \(t_n \le t
< t_{n+1}\) given \(Y_{n} = (s_k, t_n)\) .  In other words,
\(\bf{Z}_{t}\) is a piecewise constant version of \(\bf{Y}\)
as shown in Figure 4.  Realization of a continuous time stochastic process and
associated Markov chain.



Figure 4.  Realization of a continuous time stochastic process and
associated Markov chain.



A realization of the process \(\bf{Y}\) is defined by the closed
diamonds (left end points) alone.  Similarly, a realization of the
process \(\bf{Z}_t\) is illustrated by the closed diamonds and
line segments.  The closed and open diamonds at the ends of the line
segment indicate that the segments include the left but not the right
end points.

The memoryless property for Markov processes is considerably more
delicate than in the case of Markov chain because the time variable is
continuous rather than discrete.  In the case of \(\bf{Y}\), the
conditional probabilities for state transitions of must satisfy


\[\mathcal{P}[Y_{n+1} = (s_{l},t_{n+1}) | Y_0=(s_i, t_0), Y_1=(s_j, t_1),
\ldots, Y_n=(s_k, t_n)] =
\mathcal{P}[Y_{n+1} = (s_{l}, t_{n+1}) | Y_{n}=(s_k, t_{n})]\]

The proper generalization of the requirement of time-homeogeneity
stated previously for Markov chains is that joint probability
be unchanged by uniform shifts in time


\[\mathcal{P}[Z_{t+\tau} | Z_{s+\tau}] = \mathcal{P}[Z_{t} | Z_{s} ]\]

for \(0<s<t\) and \(\tau > 0\).  Stochastic processes with
shift invariant state transition probabilities are called
stationary.

When we examined hazard rates above, we were examining the rate
of transitions for a Markov process. The overall probability
of the next state of the Markov process is called the core
matrix,


\[\mathcal{P}[Z_{t} | Z_{s} ]=Q_{ij}(t_{n+1}-t_n)\]

indicating a state change between the states \((s_i,s_j)\).
The derivative of this is a rate,


\[q_{ij}(t_{n+1}-t_n)=\frac{dQ_{ij}(t_{n+1}-t_n)}{dt},\]

which is a joint distribution over states and time intervals.
Normalization for this quantity sums over possible states
and future times,


\[1=\int_0^\infty \sum_j  q_{ij}(s)ds.\]

The survival, in terms of the core matrix, is


\[G_i(\tau)=1-\int_0^\tau \sum_k  q_{ik}(s)ds.\]

This means our hazard is


\[\lambda_{ij}(\tau)=\frac{q_{ij}(\tau)}{1-\int_0^\tau \sum_k  q_{ik}(s)ds}.\]

For the measles example, the set of future states \(j\) of each individual
include symptomatic and all the possible other ways an individual
leaves the study, so you can think of \(j=\mbox{left town}\).
In practice, we build a hazard in two steps. First, count the probability
over all time for any one eventual state \(j\). This is the
same stochastic probability \(\pi_{ij}\) that is seen in Markov
chains. Second, measure the distribution of times at which
intervals enter each new state \(j\), given that they are headed
to that state. This is called the holding time, \(h_{ij}(\tau)\),
and is a conditional probability. Together, these two give us
the core matrix,


\[q_{ij}(\tau)=\pi_{ij}h_{ij}(\tau).\]

Note that \(h_{ij}(\tau)\) is a density whose integral
\(H_{ij}(\tau)\) is a cumulative distribution. If we write the
same equation in terms of probabilities, we see that it amounts
to separating the Markov process into a marginal and conditional
distribution.


\[\begin{split}\begin{eqnarray}
q_{ij}(\tau)&=&\frac{d}{d\tau}P[Z_t|Z_s]\\
&=&\frac{d}{d\tau}P[s_j|s_i,t_n]P[t_{n-1}-t_n\le\tau|s_i,s_j,t_n]\\
  & = & P[s_j|s_i,t_n]\frac{d}{d\tau}P[t_{n-1}-t_n\le\tau|s_i,s_j,t_n] \\
  & = & \pi_{ij}\frac{d}{d\tau}H_{ij}(\tau) \\
  & = & \pi_{ij}h_{ij}(\tau)
\end{eqnarray}\end{split}\]

Choosing the other option for the marginal gives us the
waiting time formulation for the core matrix. It corresponds
to asking first what is the distribution of times at which the
next event happens, no matter which event, and then asking
which events are more likely given the time of the event.


\[\begin{split}\begin{eqnarray}
q_{ij}(\tau)&=&\frac{d}{d\tau}P[Z_t|Z_s]\\
&=&\frac{d}{d\tau}P[s_j|s_i,t_n,t_{n+1}]P[t_{n-1}-t_n\le\tau|s_i,t_n]\\
  & = & \frac{d}{d\tau}(\Pi_{ij}(\tau)W_i(\tau)) \\
  & = & \pi_{ij}(\tau)\frac{d}{d\tau}W_i(\tau) \\
  & = & \pi_{ij}(\tau)w_{i}(\tau)
\end{eqnarray}\end{split}\]

While the waiting time density \(w_i(\tau)\), is the derivative
of the waiting time, we won’t end up needing to relation
\(\pi_{ij}(\tau)\) to \(\Pi_{ij}(\tau)\) when finding trajectories
or computing hazards, so the more complicated relationship won’t
be a problem.
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CTDE API


Physical State

The physical state is composed of a set of disjoint substates. Each substate can be read and written with a key. That means anything you want to be state should have a getindex and setindex!.
A simple example is state=zeros(Int, 10).
A more complicated example, this state is a count of bees at different plants.

type PhysicalState
    plants::Array{Int,2}
    bees::Array{Int,2}
end

function getindex(state::PhysicalState, x, y)
    state.bees[x, y]
end

function setindex!(state::PhysicalState, value, x, y)
    state.bees[x, y]=value
end





When specifying the process, intensities and firing functions can depend on the state only through a certain set of indexes, which you specify. In this example, the indices will be of the form of a tuple, (x, y) of type Tuple{Int, Int}.




Partial Process

The library defines the partial process, CTDE.PartialProcess, which is used to specify the simulation and compute trajectories.

process=PartialProcess(physical_state)





Then specify the process by adding transitions.




Transitions

Each transition has two logical parts, an intensity function which describes when the transition is enabled and how long after enabling it will fire, and a firing function which describes what the transition does to the state when it fires.


	
AddTransition!(process::PartialProcess, hazard::Intensity, hazard_dependencies, firing::Function, firing dependencies, name, keywords)

	
	process::PartialProcess is the partial process just defined above.

	hazard::Intensity is a hazard rate, derived from the abstract class Intensity, as will be described below.

	hazard_dependencies is a list of indices into the physical state that will be passed to the intensity for this transition.

	firing::Function is a function that changes the state, as described below.

	firing_dependencies is a list of indices into the physical state that will be passed to the intensity for this transition.

	name is a friendly name to use when the process tells you what transition fired.

	keywords means that you can pass values such as index=3 to the transition as messages to the samplers. Some samplers need hints about how to organize their work.

	Returns nothing.










Intensity

An intensity says when the transition is enabled or disabled and, when it is enabled, the distribution of times at which it may fire.


	
class Intensity

	An abstract class for transition intensities. There are methods
defined on this abstract class which help implement intensities.






	
Enabled(intensity::Intensity)

	Returns a boolean to say whether the intensity is currently enabled.
The helper method returns intensity.enabled for the object passed.






	
Reset!(intensity::RecoverIntensity, time::Float64, state, keys..)

	When a transition fires, this is called to tell the intensity that it must forget all past observations of the state and determine, from the state at the values specified by the keys, what is the new distribution going forward.






	
Update!(intensity::RecoverIntensity, time, state, keys...)

	This is the workhorse of the intensity distribution. Given the state at the given set of keys, the intensity chooses its current distribution for the hazard rate. It returns a symbol to report what happened. That symbol is either :Unmodified, :Disabled, :Enabled, or :Modified. The last choice, :Modified, means that the hazard was nonzero and is now nonzero but with a different distribution.






	
Sample(intensity::Intensity, when::Float64, rng::MersenneTwister)

	samples the current distribution for the hazard, given that it has not yet fired by time when. This method calls Sample(intensity.distribution), so a type which defines a distribution member doesn’t need to reimpliment this method.






	
Putative(intensity::Intensity, when::Float64, exponential_interval::Float64)

	integrates the current distribution for the hazard to determine at what time it will have used up an integrated hazard equal to exponential_interval. This is a way to sample distributions for Gibson and Bruck’s Next Reaction Method or Anderson’s method. This method calls Putative(intensity.distribution), so a type which defines a distribution member doesn’t need to reimpliment this method.






	
class MemoryIntensity

	Many intensities can be defined with three quantities,
1) whether they are enabled given the current state, 2)
given that they are enabled, the current set of parameters
for their distribution, and 3) the particular distribution.
This intensity is called a memory intensity because
it sets the enabling time of the distribution when it is
enabled, but it doesn’t change that enabling time if, when
the state changes, the parameters for the distribution
change. It remembers the first enabling time.






	
MemoryIntensity(invariant::Function, distribution)

	The distribution is a TransitionDistribution. The function
is described just below.






	
invariant(time, state, keys...)

	This function looks at the state, as indexed by the keys
and returns a tuple with two values, whether the transition
should be enabled, according to the current state, and,
if so, what are the values of the parameters for the
distribution of this transition. It looks like
(Bool, Array{Any,1}).






	
class MemorylessIntensity

	Many intensities can be defined with three quantities,
1) whether they are enabled given the current state, 2)
given that they are enabled, the current set of parameters
for their distribution, and 3) the particular distribution.
This intensity is called a memoryless intensity because
it sets the enabling time of the distribution not only it is
enabled, but whenever a change of the state causes the
parameters, those returned by the invariant, to change.
When that happens, it forgets the original enabling time.





For example, a simulation of susceptible-infectious-susceptible
individuals defines a recovery intensity that ensures that
the last infectious person never recovers. It sounds mean,
but it helps certain long-running simulations get data.


sis.jl

function Recover(state, who)
    state[who]=0
    [who]
end

function RecoverParameters(time, state, who, others...)
    enabled=(state[who]==1)
    # Forbid recovery if this is the only one infectious.
    found_nonzero=false
    for nz_idx = 1:length(others)
        if state[others[nz_idx]]>0
            found_nonzero=true
            break
        end
    end
    (enabled && found_nonzero, [1.0, 2.0])
end
    for midx = 1:N
        hazard=MemorylessIntensity(RecoverParameters,
                TransitionWeibull(1.0, 2.0))
                # TransitionExponential(parameters[:Gamma]))
        depends=[midx]
        for dep_idx=1:N
            if dep_idx!=midx
                push!(depends, dep_idx)
            end
        end
        # We add the index=transition_idx only for Direct methods.
        AddTransition!(process,
            hazard, depends,
            Recover, [midx],
            "r$midx", index=transition_idx )







There are helper methods, defined on the abstract type Intensity,
which reduce the amount of code required for implementation.

type InfectIntensity <: Intensity
    distribution::TransitionDistribution
    enabled::Bool
    InfectIntensity(dist)=new(dist, 0.0, false)
end

function Reset!(intensity::InfectIntensity, time, state, who, whom)
    distribution.enabling_time=time
    Update!(intensity, time, state, who, whom)
end

function Update!(intensity::InfectIntensity, time, state, who, whom)
    modified=:Undefined
    enabled=(state[who]==1 && state[whom]==0)
    if enabled!=intensity.enabled
        if enabled
            intensity.distribution.enabling_time=time
            modified=:Enabled
        else
            modified=:Disabled
        end
        intensity.enabled=enabled
    else
        modified=:Unmodified
    end
    modified
end





In general, the intensity can depend on any state since it last fired or the start of the simulation. In practice, an intensity will examine the state to create parameters for the distribution. The WrappedDistribution is a good example of the interface distributions support.




Transition Distributions

The distributions an intensity needs have different methods from
distributions in Julia’s Distributions module.


	
class TransitionDistribution

	This abstract class is a base class for the continuous univariate distributions used by intensities.






WrappedDistribution


	
class WrappedDistribution

	This class uses the available distributions in the Distributions package to meet the API needed by the simulation. It’s likely less efficient and possibly numerically inaccurate for some distributions, but here goes. Its members are relative_distribution and enabling_time.






	
WrappedDistribution(dist::Distributions.ContinuousUnivariateDistribution, enabling_time::Float64)

	The constructor. Pass in a distribution from the Distributions package.






	
Sample(distribution::WrappedDistribution, now::Float64,

	
rng::MersenneTwister)

	This samples the distribution using the given random number generator. It calls quantile(distribution, now, rand(rng)).






	
HazardIntegral(dist::WrappedDistribution, t1, t2)

	This integrates the hazard from time t1 to time t2 using
logccdf(dist, t1-te)-logccdf(dist, t2-te) where te is the enabling time.






	
ImplicitHazardIntegral(dist::WrappedDistribution, cumulative_hazard::Float64, when::Float64)

	This is the inverse of the hazard integral, so
ImplicitHazardIntegral(dist, HazardIntegral(dist, t1, t2), t1)=t2.






	
EnablingTime(dist::WrappedDistribution)

	Return the enabling time. It’s a common parameter of all of these distributions.






	
EnablingTime!(dist::WrappedDistribution, time::Float64)

	Set the enabling time.






	
Parameters(dist::WrappedDistribution)

	This returns the parameters for the distribution. The exact set depends on the underlying distribution.








Exponential


	
TransitionExponential(λ::Real, enabling_time::Real)

	The rate, λ, is the hazard rate, not a scale.


\[F(T)=1-exp\left[-\lambda(T-Te)\right]\]








Weibull


	
TransitionWeibull(θ::Float64, k::Float64)

	The scale is \(\theta\). \(k\) is the exponent.


\[F(T)=1-exp\left[-\left(\frac{T-Te}{\theta}\right)^k\right]\]








Gamma


	
TransitionGamma(α, β, enabling_time)

	α is the shape parameter, β the inverse scale parameter, also called a rate parameter.


\[f(t)=\frac{\beta^\alpha}{\Gamma(\alpha)}x^{\alpha-1} e^{-\beta x}\]








LogLogistic


	
TransitionLogLogistic(α, β)

	
\[F(t)=\left[1 + \left(\frac{t-t_e}{\alpha}\right)^{-\beta}\right]^{-1}\]








NelsonAalen


	
class NelsonAalenDistribution

	Given a list of times the distribution either fired or was right-censored, meaning it failed to fire, this constructs an estimator of the distribution that can be sampled.

Because each transition in the process will either fire or be interrupted, this estimator can be used to ask whether the firing of each transition matches the expected distribution.






	
cdf(dist::NelsonAalenDistribution, bypoint::Int)

	






Empirical


	
class EmpiricalDistribution

	This class estimates a distribution given samples of the times at which that distribution fired. First make the object and then use push! to add values. Finally, call build! before sampling from it.
This is useful for testing distributions.






	
EmpiricalDistribution()

	Constructor.






	
push!(ed::EmpiricalDistribution, value::Float64)

	Add a sample to the list.






	
build!(ed::EmpiricalDistribution)

	Internally, it needs to sort the list of samples.






	
mean(ed::EmpiricalDistribution)

	




	
variance(ed::EmpiricalDistribution)

	




	
kolmogorov_smirnov_statistic(ed::EmpiricalDistribution, other)

	The other is a distrubition for which cdf is defined. This returns two values, the maximum difference between the two distributions and whether that maximum difference meets the 0.05 confidence interval for the hypothesis that they are the same distribution.










Firing Function

The firing function is a function that modifies state. Its signature has to be


	
FiringFunction(state, keys...)

	



the firing function returns a list of all substates which could be affected by having fired. While the list of hazard dependencies and firing dependencies is state, the list of what was affected by firing is not. As an example, recovery and infection for a disease model could look like
If the firing function reads or writes mutable state other than that specified by the indices in keys, then the simulation will be incorrect.

function Recover!(state, who)
    state[who]=0
    [who]
end

function Infect!(state, who)
    state[who]=1
    [who]
end








Simulation Observer

Every time the simulation determines the next time and transition, it changes the state and then calls an observer with the signature


	
StateObserver(state, affected_keys, clock_name, time::Float64)

	
	state is the state of the system.

	affected_keys are those substates which were affected when the last transition fired.

	clock_name is the name given to that transition.

	time is the time at which that transition happened.

	Returns: The observer returns a boolean indicating whether the simulation may continue.







In practice, this function is a closure which adds data to a list of data, or writes that list to disk. For instance,

function Observer(out::ScreenObserver)
    function sobserve(state::Array{Int,1}, affected_keys, clock_name, time::Float64))
        AddEntry!(out, state[affected_keys[1], time])
    end
end








Sampler

Define a sampler. There are a few to choose among.


	
class NextReactionHazards

	This sampler uses a variant of Gibson and Bruck’s next reaction algorithm, described by Anderson and Kuntz.






	
NextReactionHazards()

	Constructor.






	
class FixedDirect

	This is an optimized direct reaction sampler. It assumes there are a fixed number of transitions in the system and that every transition is given an ordinal with keywords of the form index=<Int>.






	
FixedDirect(N::Int)

	Constructor. N is the number of transitions in the system.






	
class NaiveSampler

	This is appropriate only for simulations where no transition is ever reenabled after it fires or is disabled. It is equivalent to Next Reaction in this case.








Running a Simulation

Once the process is created and sampler chosen, a single function runs the simulation. In this example, the MakeProcess function creates state and adds transitions to the process.

rng=MersenneTwister(333333)
N=3
parameters=Dict(:Gamma =>1.0, :Beta => 1.0)
process, state=MakeProcess(N, parameters, rng)
observer=SamplingObserver(N, 1000)
sampler=NextReactionHazards()

RunSimulation(process, sampler, Observer(observer), rng)
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Examples


	Well-mixed SIR [https://github.com/adolgert/CTDE.jl/tree/master/example/sir] as a test of Ball and Nasell’s predictions of SIR final size distributions.

	Bouncing Rabbits [https://github.com/adolgert/CTDE.jl/blob/master/example/rabbits.jl] which move on a two-dimensional board, without stepping on each other, but they infect each other, sadly.

	Susceptible-Infectious-Susceptible [https://github.com/adolgert/CTDE.jl/blob/master/example/sis.jl] This is a good test of the samplers because results are well-known. It plots the master probabilities for a regenerative process.

	Object-based Simulation [https://github.com/adolgert/CTDE.jl/blob/master/example/sir.jl] This doesn’t use dictionary keys in order to access substates of the physical state. It uses the objects themselves, which lends it to more free-form simulation.
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Detailed Description of Distributions

This describes implementation of distributions for sampling of
distributions for stochastic simulation in continuous time. This kind of
simulation makes specific demands on what calls a distribution must
support, and those calls are different from what libraries provide.
This is a guide for implementation of new distributions
and a way to ensure that those implemented look correct.
If something is wrong here, it matters, so file a bug report.


Notation

First, let’s affix notation. The cumulative distribution function
of every regular distribution can be written as an integral over
its hazard rate, \(\lambda\)


(1)\[F(t)=1-e^{-\int_{0}^t \lambda(s)ds}.\]

All algorithms for stochastic simulation treat distributions as
being defined in absolute time, specified as an enabling time,
\(t_e\),


(2)\[F(t, t_e)=1-e^{-\int_{0}^{t-t_e} \lambda(s)ds}.\]

Working with distributions in absolute time is a simple shift of the
time scale and will be ignored in further discussions, although
the enabling time, \(t_e\), will certainly appear in code.
Fig.(1).

The density function is the derivative of the cumulative distribution
function,


(3)\[f(t)=\frac{dF(t)}{dt}=\lambda(t)e^{-\int_{0}^t \lambda(s)ds}.\]

The survival is


(4)\[G(t)=1-F(t)=e^{-\int_{0}^t \lambda(s)ds}.\]

Because survival is multiplicative, we further label the survival
from time \(t_0\) to \(t_1\) as


(5)\[G(t_0, t_1)=\frac{G(t_1)}{G(t_0)}=e^{-\int_{t_0}^{t_1} \lambda(s)ds}\]




Requirements for a Continuous-Time Simulation


Shifted Sample

The First Reaction method requires that we sample a distribution
given that we known it has not yet fired by a time \(t_0\).
The statement that it hasn’t fired by time \(t_0\) creates a
new distribution from which to sample. If the old distribution
had the hazard \(G(t)=G(0, t)\), it could be written as


(6)\[G(0, t)=G(0, t_0)G(t_0, t).\]

It is this partial survival, since \(t_0\), that we want to sample.
Solving for \(G(t_0, t)\) and subtracting both sides from 1,


\[1-G(t_0, t)=\frac{G(0, t_0)-G(0, t)}{G(0, t_0)}.\]

Written in terms of the cumulative distribution functions, the
cdf of the new distribution, which we’ll call \(F(t, t_0)\), is


(7)\[F(t, t_0)=\frac{F(t)-F(t_0)}{1-F(t_0)}\]

This kind of distribution could be sampled by a rejection method,
but the default way to sample it is by inversion, which
means generating a uniform random value between \([0,1]\)
and solving \(U=F(t)\) for \(t\). For Eq.(7),
this becomes


(8)\[\begin{split}\begin{eqnarray}
 U&=&F(t,t_0,t_e) \\
  &=&\frac{F(t,t_e)-F(t_0,t_e)}{1-F(t_0,t_e)} \\
U(1-F(t_0,t_e))&=&F(t,t_e)-F(t_0,t_e) \\
F(t,t_e)&=&U(1-F(t_0,t_e))+F(t_0,t_e) \\
F(t-t_e)&=&U(1-F(t_0-t_e))+F(t_0-t_e) \\
t-t_e &=& F^{-1}\left[U(1-F(t_0-t_e))+F(t_0-t_e)\right] \\
t &=& t_e+F^{-1}\left[U(1-F(t_0-t_e))+F(t_0-t_e)\right]
\end{eqnarray}\end{split}\]

We will call this operation SampleShifted.




Hazard Rate for Next Reaction

The Next Reaction method requires sampling a distribution such
that the quantile is saved, so that later adjustments to the
distribution can use the same quantile.

During a simulation, the hazard rate, \(\lambda\), is a function
of the state of the system, \(X(t)\). The state of the system
only changes in jumps, so the hazard rate is effectively
a series of distributions in time. For instance, a hazard rate,
from enabling time \(T_0\) to firing time \(T_3\), might have three parts.


(9)\[\begin{split}\begin{eqnarray}
  \lambda(\{X_0, T_0\}, t)=h_0(t) & &\qquad T_0 \le t < T_1 \\
  \lambda(\{X_0, T_0, X_1, T_1\}, t)=h_1(t) & &\qquad T_1 \le t < T_2 \\
  \lambda(\{X_0, T_0, X_1, T_1, X_2, T_2\}, t)=h_2(t) & &\qquad T_2 \le t < T_3
\end{eqnarray}\end{split}\]

The algorithm therefore samples for a firing time from \(h_0(t)\)
as soon as the transition is enabled, but that time will turn out to
be wrong (we call it a putative time). Later, the algorithm will
resample using \(h_1(t)\) using the original sample’s quantile
and taking time off the clock.
If the first sample were by inversion, it would look like solving this
equation for \(t\) (still ignoring enabling times),


\[U=1-\exp\left(\int_0^{t}h_0(s)ds\right).\]

Then a later sample would use the same \(U\), but with knowledge that
the distribution now contains a new part, \(h_1(t)\),


(10)\[ U=1-\exp\left(-\int_0^{t_1}h_0(s)ds\right)\exp\left(-\int_{t_1}^{t}h_1(s)ds\right)\]

Anderson had the bright idea to write the quantile as an
exponential quantile,
\(1-U=e^{\ln (1-U)}\), so that the equation requires only
addition of integrated hazards,


(11)\[\begin{split}\begin{eqnarray}
  \ln(1-U)&=&-\int_0^{t_1}h_0(s)ds-\int_{t_1}^{t}h_1(s)ds \\
  \int_{t_1}^{t}h_1(s)ds&=&-\ln(1-U)-\int_0^{t_1}h_0(s)ds.
\end{eqnarray}\end{split}\]

As the underlying distribution, \(h_i(t)\), changes, the
right hand side gets smaller and smaller. Let’s call the sum
of all consumed hazard \(\gamma\),


\[\gamma=\sum_i \int_{t_i}^{t_{i+1}}h_i(s)ds\]

The algorithm therefore needs three operations from the distribution.


	MeasuredSample—Sample the distribution, returning the exponential quantile.
Calling the random number generator, “rng,” and the putative
time \(t_p\), it’s


\[\left(\mbox{rng}, h_0(t)\right) \mapsto \left(t_p, -\ln(1-U)\right).\]



	ConsumeSample—Consume remaining quantile for the next sample. If the sum of
hazard in the past is called \(\gamma\), then


\[\left(\gamma, h_i(t), t_i\right) \mapsto \left(\gamma', t_{i+1}\right)\]



	Putative—Generate a new putative time from the exponential quantile and
the consumed hazard,


\[\left(-\ln(1-U), \gamma, t_i, h_i(t)\right) \mapsto p_t\]





The nice part about the first step is that there is no need
to sample by inversion. Any sampling method will do, as long
as the exponential quantile is calculated.




Cumulative Distributions for Next Reaction

The original form of the Next Reaction, by Gibson and Bruck,
was written in terms, not of the hazards, but of the
cumulative distribution functions. This form remains useful because
some distributions are much simpler, or more accurate, to sample
as cdfs instead of sampling from their hazard rates.

Returning to Eq.(10), this can be rewritten
as


\[1-U=\exp\left(-\int_0^{t_1}h_0(s)ds\right)\exp\left(-\int_{t_1}^{t}h_1(s)ds\right)\]

In terms of the survival functions, this becomes


\[1-U=G_0(0, t_1)G_1(t_1, t)\]

If we wish to solve this for \(t\), then, in terms of the survival,
it looks like


\[G_1(t_1, t)=\frac{1-U}{G_0(0, t_1)}\]

Writing the left-hand side as a cumulative distribution function
requires the transformation


\[G(a, b)=\frac{G(b)}{G(a)}=\frac{1-F(b)}{G(a)}\]

so we have


\[F_1(t)=1-G_1(t_1) \frac{1-U}{G_0(0, t_1)}\]

This generalizes to many steps as


\[F_j(t)=1-G_j(t_j) (1-U) \prod_i^j \frac{G_i(t_i)}{G_i(t_{i+1})}\]

Let’s call the running product on the right \(\delta\),


\[\delta=\prod_i^j \frac{G_i(t_i)}{G_i(t_{i+1})}\]

Then the algorithm requires three operations


	MeasuredSample—Sample the distribution, returning the quantile.
Calling the random number generator, “rng,” and the putative
time \(t_p\), it’s


\[\left(\mbox{rng}, h_0(t)\right) \mapsto \left(t_p, 1-U\right).\]



	ConsumeSample—Consume remaining quantile for the next sample.


\[\left(\delta_i, h_i(t), t_i\right) \mapsto \left(\delta_{i+1}, t_{i+1}\right)\]



	Putative—Generate a new putative time from the exponential quantile and
the consumed hazard,


\[\left(1-U, \delta_i, t_i, h_i(t)\right) \mapsto p_t\]





As you can see by comparison with the hazards version, it’s simple
to write the algorithm to accommodate either method of sampling.
Therefore, each distribution can choose which interface to support.






Testing Distributions


EmpiricalDistribution

The type EmpiricalDistribution will estimate the mean and
variance of a distribution, given samples from it.
More importantly, it can compare those samples with a given
functional form of a distribution using the Kolmogorov-Smirnov
test. Often the distributions in this library have corresponding
distributions in the main library, just with a different interface.

There are test functions in after the definition of each
distribution to do these tests.




Emulating Next Reaction Sampling

Take a MeasuredSample and then repeatedly consume the sample,
with the same distribution, and finally use Putative
to get a value. It should agree with the original sample.




Exact Solution to Paradigmatic Systems

There are some stochastic systems, such as a random walk,
or the SIR model, for which exact results are known for
certain distributions.

The Ball Nasell example shows this. It turns out there
is a minor error in Ball Nasell we found this way.
The Weiss example makes a similar measurement.






Using Julia’s Distributions

Julia’s continuous univariate distributions support a fixed
interface. In this section, we look at how to translate any
distribution into the operations above.

In this table, d is the distribution.







	cdf(d,t)
	\(F(t)\)


	quantile(d,q)
	\(F^{-1}(q)\)


	logcdf(d,t)
	\(\ln(F(t))\)


	ccdf(d,t)
	\(G(t)\)


	logccdf(d,t)
	\(-\int_0^t \lambda(s)ds\)


	quantile(d,q)
	\(F^{-1}(q)\)


	cquantile(d,q)
	\(F^{-1}(1-q)=G^{-1}(q)\)


	invlogcdf(d,lp)
	\(F^{-1}(e^{l_p})\)


	invlogccdf(d,lp)
	\(G^{-1}(e^{l_p})\) or \(-\int_0^{t(l_p)}\lambda(s)ds=l_p\)


	randexp(rng)
	\(-\ln(1-U)\)





A shifted sample, from Eq.(8), which
ends with


\[t = t_e+F^{-1}\left[U(1-F(t_0-t_e))+F(t_0-t_e)\right]\]

transliterates to


wrappeddistribution.jl

function MeasuredSample(d::WrappedDistribution, t0::Float64, rng)
    U=rand(rng)
    te=d.enabling_time
    value=te+quantile(d.relative_distribution,
        U+(1-U)*cdf(d.relative_distribution, t0-te))
    (value, -log(1-U))
end







The next two pieces concern the hazard. The goal is to find the integral
of the hazard between two absolute times, \(t_1\) and \(t_2\),
where both are \(t_{1,2}\ge t_0\). This is


\[\int_{t_1-t_e}^{t_2-t_e} \lambda(s)ds=\int_{0}^{t_2-t_e} \lambda(s)ds
    -\int_{0}^{t_1-t_e} \lambda(s)ds.\]

In terms of the given methods, this would be, noting the minus sign in
the table,


wrappeddistribution.jl

function ConsumeSample(dist::WrappedDistribution, xa, start, finish)
    if xa<0
        xa=0
    end
    xa+HazardIntegral(dist, start, finish)
end

function HazardIntegral(dist::WrappedDistribution, t1, t2)
    # logccdf is log(1-cdf(d, x))
    rel=dist.relative_distribution
    te=dist.enabling_time
    logccdf(rel, t1-te)-logccdf(rel, t2-te)
end







Looking back to Eq.(11),


\[\begin{equation}
  \int_{t_1}^{t}h_1(s)ds=-\ln(1-U)-\int_0^{t_1}h_0(s)ds,
\end{equation}\]

we can label xa the combination of the exponential quantile
and the sums of integrals on the right-hand side.


wrappeddistribution.jl

function Putative(dist::WrappedDistribution, when,
        interval, consumed_interval)
    ImplicitHazardIntegral(dist, interval-consumed_interval, when)
end

function ImplicitHazardIntegral(dist::WrappedDistribution, xa, t0)
    rel=dist.relative_distribution
    te=dist.enabling_time
    t=te+invlogccdf(rel, -xa+logccdf(rel, t0-te))
    @assert(t>=t0)
    t
end










Exponential

The exponential distribution is constructed with a hazard
rate, even though the internal distributions object
uses a scale, which is \(\theta =1/\lambda\),


exponentialdistribution.jl

type TransitionExponential <: TransitionDistribution
    hazard::Float64
    enabling_time::Float64
    TransitionExponential(rate::Real)=new(rate, 0.0)
end







It doesn’t matter how we sample the distribution, as long
as we return its quantile. This samples using
Base.randexp, which uses the ziggurat method for a sample
that’s much faster than inversion. The value returned by
randexp is equivalent to \(-\ln(1-U)\).


exponentialdistribution.jl

function MeasuredSample(d::TransitionExponential, now::Float64, rng)
    u=randexp(rng)
    (now+u/d.hazard, u)
end







The hazard integral for constant hazards is \((t_2-t_1)\lambda\).


exponentialdistribution.jl

function HazardIntegral(dist::TransitionExponential, start, finish)
    @assert(finish>=start)
    (finish-start)*dist.hazard
end

function ConsumeSample(dist::TransitionExponential, xa, start, finish)
    xa = xa<0 ? 0 : xa
    xa+HazardIntegral(dist, start, finish)
end







Even inverting the hazard integral is an increment with a multiplication.


exponentialdistribution.jl

function ImplicitHazardIntegral(dist::TransitionExponential,
        cumulative_hazard, current_time)
    @assert(cumulative_hazard>=0)
    current_time+cumulative_hazard/dist.hazard
end

function Putative(dist::TransitionExponential, when,
        interval, consumed_interval)
    ImplicitHazardIntegral(dist, interval-consumed_interval, when)
end










Weibull

Like the exponential distribution, the Weibull distribution
has an integrable hazard rate, which makes implementation
straightforward. Unfortunately, the use of the parameter
\(\lambda\) in the definition of the Weibull is at odds
with our use of it as a hazard rate, but it’s just a scale parameter
here.


(12)\[ F(t)=1-\exp\left[\left(\frac{t-t_e}{\lambda}\right)^k\right]\]

The constructor uses this cdf.


weibulldistribution.jl

type TransitionWeibull <: TransitionDistribution
    parameters::Array{Float64,1}
    te::Float64
    TransitionWeibull(lambda, k)=new([lambda, k], 0.0)
end







From the cdf, the hazard rate is


\[\Lambda(t)=\int_0^t\lambda(s)ds=\left(\frac{t-t_e}{\lambda}\right)^k\]

The inverse, where we ask when the integral equals \(l_u=-\ln(1-U)\),
is


\[t=t_e+ \lambda l_u^(1/k)\]

The version in the code is overachieving because it allows for shifting
the distribution.


weibulldistribution.jl

function MeasuredSample(distribution::TransitionWeibull, now::Float64, rng)
    (λ, k)=distribution.parameters
    d=now-distribution.te
    value=0
    mlogU=randexp(rng)
    if d>0







Given that the hazard is already integrated in Eq.(12),
integrating the hazard is algebraic.


weibulldistribution.jl

function HazardIntegral(dist::TransitionWeibull, last, now)
    (λ, k)=dist.parameters
    if now-dist.te>eps(Float64)
        return ((now-dist.te)/λ)^k - ((last-dist.te)/λ)^k
    else
        return 0::Float64
    end
end

function ConsumeSample(dist::TransitionWeibull, xa, start, finish)
    xa=(xa<0) ? 0 : xa
    xa+HazardIntegral(dist, start, finish)
end








weibulldistribution.jl

function ImplicitHazardIntegral(dist::TransitionWeibull,
        cumulative_hazard, when)
    (λ, k)=dist.parameters
    if when-dist.te>eps(Float64)
        return dist.te + λ*(cumulative_hazard + ((when-dist.te)/λ)^k)^(1.0/k)
    else
        return dist.te + λ*(cumulative_hazard)^(1.0/k)
    end
end

function Putative(dist::TransitionWeibull, when,
        interval, consumed_interval)
    ImplicitHazardIntegral(dist, interval-consumed_interval, when)
end










Log-Logistic

Working from wikipedia, because Gradstein and Ryzhik is too heavy to lift.


\[F(x;\alpha, \beta)=\frac{1}{1+(x/\alpha)^{-\beta}}.\]

We shift this to


\[F(t, t_e)=\frac{1}{1+((t-t_e)/\alpha)^{-\beta}}.\]

The pdf is


\[f(x;\alpha, \beta)=\frac{(\beta/\alpha)(x/\alpha)^{\beta-1}}
  {(1+(x/\alpha)^\beta)^2}.\]

The quantile is


\[F^{-1}(p; \alpha, \beta)=\alpha \left(\frac{p}{1-p}\right)^{1/\beta}.\]

Survival


\[G(t)=1-F(t)=\frac{1}{1+(t/\alpha)^\beta}.\]

Hazard


\[\lambda(t)=\frac{f(t)}{G(t)}=\frac{(\beta/\alpha)(t/\alpha)^{\beta-1}}
  {1+(t/\alpha)^\beta}\]

Lastly, we need invlogccdf(d,lp), which is
\(G_d^{-1}(e^{l_p})\), or \(-\int_0^t(l_p)\lambda(s)ds=l_p\).


\[\begin{split}\begin{aligned}
  l_p&=&\ln(G(t)) \\
  e^{l_p}&=&G(t) \\
  e^{l_p}&=&\frac{1}{1+(t/\alpha)^\beta} \\
  e^{-l_p}&=&1+(t/\alpha)^\beta \\
  (t/\alpha)^\beta&=&  1-e^{-l_p}\\
  t/\alpha&=& (1-e^{-l_p})^{1/\beta}\\
   t&=&\alpha(1-e^{-l_p})^{1/\beta}\\\end{aligned}\end{split}\]




Gamma

We will define paramaters from the shape \(\alpha\) and rate
\(\beta\).


\[f(x)=\frac{\beta^\alpha}{\Gamma(\alpha)}x^{\alpha-1}e^{-\beta x}\]

where


\[\Gamma(t)=\int_0^\infty x^{t-1}e^{-x}dx.\]

The CDF is


\[F(x;\alpha,\beta)=\frac{\gamma(\alpha,\beta x)}{\Gamma(\alpha)}\]

where \(\gamma\) is the (lower) incomplete gamma function,


\[\gamma(x;\alpha)=\int_0^x t^{\alpha-1}e^{-t}dt\]

In our back pocket, from Boost::Math, are \(\Gamma(x)\),
\(\ln(|\Gamma(x)|)\), digamma, which is


\[\psi(x)=\frac{d}{dx}\ln(\Gamma(x))=\frac{\Gamma'(x)}{\Gamma(x)},\]

gamma ratio, which is \(\Gamma(a)/\Gamma(b)\), gamma delta ratio,
which is \(\Gamma(a)/\Gamma(a+\Delta)\), and the set of incomplete
gamma functions. In order, they are normalized lower incomplete,
normalized upper, incomplete full (non-normalized) lower incomplete, and
full (non-normalized) upper incomplete gamma functions.


\[\begin{split}\begin{aligned}
  \mbox{gamma\_p}(a,z)&=&\frac{\gamma(a,z)}{\Gamma(a)}=\frac{1}{\Gamma(a)}
     \int_0^zt^{a-1}e^{-t}dt \\
  \mbox{gamma\_q}(a,z)&=&\frac{\Gamma(a,z)}{\Gamma(a)}=\frac{1}{\Gamma(a)}
     \int_z^0t^{a-1}e^{-t}dt \\
  \mbox{tgamma\_lower}(a,z)&=&\gamma(a,z)=
     \int_0^zt^{a-1}e^{-t}dt \\
  \mbox{tgamma}(a,z)&=&\Gamma(a,z)=\frac{1}{\Gamma(a)}
     \int_z^0t^{a-1}e^{-t}dt \\\end{aligned}\end{split}\]

There are a set of inverses of incomplete gamma functions and
derivatives of incomplete gamma functions. OK, back to what we need.


\[\begin{split}\begin{aligned}
  F(x;\alpha,\beta)&=&\mbox{gamma\_p}(\alpha, \beta x) \\
  F^{-1}(y;\alpha,\beta)&=&\mbox{gamma\_p\_inv}(\alpha, y)/\beta\end{aligned}\end{split}\]

The hazard integral, in terms of the cdf, is


\[\begin{split}\begin{aligned}
 \int_{t_1-t_e}^{t_2-t_e}\lambda(s)ds&=&-\ln(1-F(t_2-t_e))+\ln(1-F(t_1-t_e)) \\
 &=& \ln\left[\frac{1-F(t_1-t_e)}{1-F(t_2-t_e)}\right].\end{aligned}\end{split}\]

Can we simplify this into something provided?


\[\begin{split}\begin{aligned}
\int_{t_1-t_e}^{t_2-t_e}\lambda(s)ds & = & \ln\left[\frac{1-\frac{\gamma(\alpha,\beta (t_1-t_e))}{\Gamma(\alpha)}}{1-\frac{\gamma(\alpha,\beta (t_2-t_e))}{\Gamma(\alpha)}}\right] \\
 & = & \ln\left[\frac{\Gamma(\alpha)-\gamma(\alpha,\beta (t_1-t_e))}
 {\Gamma(\alpha)-\gamma(\alpha,\beta (t_2-t_e))} \right] \\
\gamma(\alpha,\beta (t_1-t_e)) & = & \int_0^{\beta(t_1-t_e)} t^{\alpha-1}e^{-t}dt\end{aligned}\end{split}\]

It looks like we might do best just with

Ga=tgamma(a)
hazint(te, t1, t2)=log((Ga-tgamma_lower(a,b*(t1-te)))/
    (Ga-tgamma_lower(a,b*(t2-te))))





Our other goal for Gamma distributions is to get the inverse hazard.
This can be seen as two steps. First find the integral


\[l_p=-x+\left[\int_0^{t0-t_e}\lambda(s)ds\right].\]

Then solve for \(t'\) in


\[l_p=-\int_0^{t'-t_e}\lambda(s)ds.\]

Or, we could write this as


\[l_e =e^{-x}e^{-\int_0^{t0-t_e}\lambda(s)ds}=e^{-x}(1-F(t_0-t_e))\]

and


\[l_e=e^{-\int_0^{t'-t_e}\lambda(s)ds}=1-F(t'-t_e).\]

All at once,


\[\begin{split}\begin{aligned}
  F(t'-t_e)&=&1-e^{-x}(1-F(t_0-t_e)) \\
 t'&=&t_e+F^{-1}\left(1-e^{-x}(1-F(t_0-t_e))\right). \\
 F(t_0-t_e)&=&\mbox{gamma\_p}(\alpha,\beta(t_0-t_e)) \\
 F^{-1}(y)&=&\mbox{gamma\_p\_inv}(\alpha, y)/\beta\end{aligned}\end{split}\]

So here is our inverse hazard integral.

quad=1-exp(-x)*(1-gamma_p(a,b*(t0-te)))
tp=te + gamma_p_inv(a, quad)/b








Uniform Distribution

Maybe this one will be easier. This distribution has two parameters, a
start time and an end time, \(t_a\) and \(t_b\). The pdf is
constant, \(f(t)=1/(t_b-t_a)\) between \(t_a\le t<t_b\). The CDF
is just the integral of that, \(F(t)=(t-t_a)/(t_b-t_a)\). The
integrated hazard will have nonzero cases for for
\(t_1<t_a<t_2<t_b\), \(t_1<t_a<t_b<t_2\),
\(t_a<t_1<t_2<t_b\), \(t_a<t_1<t_b<t_2\). It is zero for
\(t_1<t_2<t_a\) and \(t_a<t_b<t_1<t_2\)


\[\int_{t_1-t_e}^{t_2-t_e}\lambda(s)ds=
      \ln\left[\frac{1-F(t_1-t_e)}{1-F(t_2-t_e)}\right]\]

If \(t_a\le t_n-t_e<t_b\), then
\(F(t_n-t_e)=(t_n-t_e-t_a)/(t_b-t_a)\). Otherwise it is \(0\) or
\(1\). It should never be the case that a uniform distribution does
not fire before \(t_b\). The hazard integral always sums over time
already past in the simulation. Nevertheless, it will be necessary to
check for overflow near \(t_b\), and it would help to keep the two
logs separated, instead of in the fraction.

What about the inverse of the hazard integral?
\(F^{-1}(x)=t_a+(t_b-t_a)x\) Therefore, for \(t_a\le t_0-t_e\),


\[t'=t_e+t_a+(t_b-t_a)\left[1-e^{-x}\left(1-\frac{t_0-t_e-t_a}{t_b-t_a}\right)\right]\]

and for \(t_0-t_e< t_a\),


\[t'=t_e+t_a+(t_b-t_a)\left[1-e^{-x}\right]\]




Triangular Distribution

The cumulative distribution function for the triangular distribution
with endpoints \(a\) and \(b\) and midpoint \(m\) is


\[\begin{split}\begin{aligned}
  \frac{(t-a)^2}{(b-a)(m-a)} & & a\le t \le m \\
  1-\frac{(b-t)^2}{(b-a)(b-m)} & & m<t\le b.\end{aligned}\end{split}\]

This makes the survival


\[\begin{split}\begin{aligned}
  1-\frac{(t-a)^2}{(b-a)(m-a)} & & a\le t \le m \\
  \frac{(b-t)^2}{(b-a)(b-m)} & & m<t\le b.\end{aligned}\end{split}\]


Simple Sample

The cutoff is at \(t=m\), which is


\[\begin{split}\begin{aligned}
  U'&=&\frac{(m-a)^2}{(b-a)(m-a)} \\
  &=&\frac{m-a}{b-a}\end{aligned}\end{split}\]

so first check whether \(U\) is greater than that. Then, for
\(U\) less than that,


\[\begin{split}\begin{aligned}
  t = a + \left[U(b-a)(m-a)\right]^{1/2} & & U\le U' \\
  t = b- \left[(1-U)(b-a)(b-m)\right]^{1/2} & & U'<U \\\end{aligned}\end{split}\]




Shifted Sample

If this is sampled after some time, \(x\), then the thing we want to
invert is


\[U=\frac{F(t)-F(x)}{G(x)}\]

so


\[F(t)=UG(x)+F(x)\]

which, for \(a<t\le m\) and \(a<x\le m\), is


\[\begin{split}\begin{aligned}
  \frac{(t-a)^2}{(b-a)(m-a)} & = & U\left[1-\frac{(x-a)^2}{(b-a)(m-a)}\right]
  +\frac{(x-a)^2}{(b-a)(m-a)} \\
  (t-a)^2 & = & U(b-a)(m-a)+ (1-U)(x-a)^2 \\
  t & = & a + \left[U(b-a)(m-a)+ (1-U)(x-a)^2\right]^{1/2}\end{aligned}\end{split}\]

For \(m<t\le b\) and \(m<x\le b\), this is


\[\begin{split}\begin{aligned}
  1-\frac{(b-t)^2}{(b-a)(b-m)} & = & U\frac{(b-x)^2}{(b-a)(b-m)}+
    1-\frac{(b-x)^2}{(b-a)(b-m)} \\
  -(b-t)^2 & = & U(b-x)^2-(b-x)^2 \\
  t & = & b-(b-x)\sqrt{1-U}\end{aligned}\end{split}\]

In the case that \(m<t\le b\) and \(a<x\le m\), the result is


\[\begin{split}\begin{aligned}
  1-\frac{(b-t)^2}{(b-a)(b-m)} & = & U\left[1-\frac{(x-a)^2}{(b-a)(m-a)}\right]
   + \frac{(x-a)^2}{(b-a)(m-a)}\\
  1-\frac{(b-t)^2}{(b-a)(b-m)} & = &U+\frac{(x-a)^2(1-U)}{(b-a)(m-a)} \\
  \frac{(b-t)^2}{(b-a)(b-m)} & = &(1-U)-\frac{(x-a)^2(1-U)}{(b-a)(m-a)} \\
  (b-t)^2& = &(1-U)(b-a)(b-m)-\frac{(x-a)^2(1-U)(b-m)}{(m-a)} \\
  t & = & b-\left[(1-U)(b-a)(b-m)-\frac{(x-a)^2(1-U)(b-m)}{(m-a)}\right]^{1/2}\end{aligned}\end{split}\]




Sampling from Quantile

The equation we have to solve is


\[F(t)=1-G(t_j)(1-u)\prod_i\frac{G_i(t_i)}{G_i(t_{i+1})},\]

given to us as


\[F(t)=1-G(t_j)(1-u)\gamma,\]

so, in terms of survivals, it’s


\[G(t)=G(t_j)(1-u)\gamma\]

The value on the right is all known. If \(t_j<m\), the cutoff is


\[G'=\frac{b-m}{(b-a)(b-m)}\]

Below that,
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